INSTRUCTTONS FOR INSTATJTHG AND OPERADION

$$
\frac{217-222-8200}{800-422-2218 \text { Hants ancy }}
$$

$$
\begin{aligned}
& \text { T8.80e 0x on } \\
& 54 / 6
\end{aligned}
$$

FM HARMONICS IN THE TV BAND

The sharp upsurge in FM broadcasting has in some instances developed unlooked for interference with local TV reception. In every instance this interference is in so-called fringe areas for TV reception and where the strength of the TV signal is weak enough that outside highly directional home TV antennas are necessary. --..- When this condition develops, the TV viewer quickly learns from his service man that the local FM station is the offender. ---- The FM broadcaster is immediately deluged with requests to eliminate the interference. In some instances CATV (Community Antenna Television) systems are also offended as they pick up weak distant TV stations. What is the FM broadcaster's responsibility? Answex: To meet FCC rules and regulations as related to harmonic radiation of his $F M$ equipment but not to guarantee perfect TV reception.

Below is a chart showing the picture and sound frequencies of TV stations between Channels 7-13 inclusive. Channels 2-6 are not shown. FM harmonics do not fall in these Channels. In fact, commercial FM station harmonics will affect only Channels 8 and above look at the chart.

TV Channel		Picture Frequency Band	- Mc -- Sound Frequency
7	175.25 to 179.50	197.75	
8	181.25 to 185.50	185.75	
9	187.25 to 191.50	191.75	
10	193.25 to 197.50	197.75	
11	199.25 to 203.50	203.75	
12	205.25 to 209.50	209.75	
13	1211.25 to 215.50	215.75	

The frequency range for commercial FM broadcasting is 92.1 Mc to 107.9 Mc : --- To determine the second harmonic of your FM frequency, just multiply your frequency by 2. Example: If your frequency is 99.9 Mc , multiplied by 2 would make a second harmonic of 199.8 Mc . By consulting the above chart, you will note the second harmonic falls in the picture portion of the TV Channel 11.

Correct FM Harmonic Radiation

The FCC stipulates that transmitters of 3000 watts power and over must have a harmonic attenuation of 80 db . For 1000 watts, 73 db ., and for 250 watts, 66.9 db . All reputable manufacturers design their FM transmitters to meet or exceed these specifications.

Fringe Area TV Strength Versus FM Harmonics

Let's take a typical FM station that radiates $70,000 \mathrm{microvolts}$ per meter at 1 mile. At 80 db . har monic attenuation (as called for by FCC), this station will radiate approximately 7 microvolts per meter at 1 mile on the second harmonic. In the case of our Channel 11 example, it is estimated that a fringe area TV station from 60 to 90 miles distance would have a signal strength of from 5 to 25 microvolts per meter. It can then be easily understood that a 7 microvolt signal, well within FCC specifications, would definitely interfere with the TV signal, yet with the FM broadcaster's equipment performing normally.

This is sometimes further aggravated by the FM station being located between the TV station and the TV receivers. In this instance the TV antennas are focussed not only on the TV station but your FM station as well. The home TV antennas are beamed at your legal second harmonic as well as the fringe TV station.

What To Do

When interference occurs, it will develop ragged horizontal lines on the TV picture varying with the FM program content. If the TV sound portion is interfered with (usually not the case), then the FM signal will be heard in addition to the TV sound.

1. It is not up to the FM broadcaster to go on the defensive. He did not put the TV station 75 miles away nor did he select the TV Channel. ---- In most instances the condition is a natural phenomena that neither you, the TV station, nor the FCC can correct.
2. Do not adjust the FM harmonic or "T" notch filters supplied with the FM transmitter. These are factory adjusted and most FM stations do not have the expensive equipment necessary for correct adjustment. Tampering with this calibrated adjustment will probably make the condition worse.
3. Do not rely on TV service men's types of measuring equipment. They are not built to accurately measure harmonics and invariably give erroneous readings that invite the CATV or local service men's association to say "I told you so.". Remember it is difficult to radiate harmonics if the equipment is built to suppress the harmonics and it is.
4. In many instances interference may be caused by overloading on the front end of the TV receiver. This problem usually occurs when the receiver is located close to the FM transmitter. This problem can be overcome by installing a trap tuned to the frequency of the FM carrier. The TV service man can and must learn how to do this. In most cases it works, while in some instances, if not properly installed or tuned, it will not completely eliminate the interference. In one case where interference of this type existed, a TV station put traps for the fundamental FM frequency on nearly every TV set in town. Not the FM transmitter.

Summary

The FCC is well acquainted with this nation-wide problem. If TV viewers write FCC, complaining about your FM station, remember the FCC has received a few thousand similar letters. --... It is not the obligation of the FM broadcaster to assure fringe area reception of a TV station any more than is the obligation of the TV station to assure the FM broadcaster perfect reception in his TV city.

Probably your installation will not have problems as outlined above. If they do exist, don't blame the equipment. Every transmitting device puts out a second harmonic, even the TV stations. The fact that these harmonics legally fall into the spectrum of a TV station many miles distant is coincidental, but not your fault.

FN-3H 3 KW FM TRAMSMIMTER

TABLT OF CONTENTS
SBCRTON I - GENERAL DESGRIPRIOA PAGE
1.1 Warranty and Safety Notice 1
1.2 Purpose of Book 1

1. 3 Purpose of Equipment 1
1.4 Description 1
2. 5 Technical Data 2
1.6 Vackum Tube Table 3
SECTION 2 - INSTALIATTON
2.1 Inspection 3
2.2 Packing Check List
2.3 Installabion
2.4 Handing the 40X5000A4
2.5 Powex Connection 5
2.6 Cooling 6
SBCTION 3-OPERATION
3.1 Pre-Operation (Also see Section 6)
3.2 Test Data7
3.3 Adjustment 7
3.4 Maintenance 10
SBCTION 4 - OIRCUIE DESORIPTION
4.2. Pomer Amplifjer 11
4.2 Intermedjate Power Amplision (IPA) 12
4.3 Exciter (Also see Section 6) 12
4.4 Power Supply 12
4.5 Control Circuits 12
4.6 Metering 13
SEGGTOT 5-ADDIETONAL TMFORPATTON
5.7. Remote Control 3.4
5.2 Stexeophonic Opexation 14
5.3 Frimin Pants Liset
5.4 Holpfas Genoral Information $25-17$ A What
SWMTOM 6 .. Mr-6425 MR EXCITER
SECMTON 7 - ILTUSTRATIONS
7.1 Fi- 3 Hi Front View, Showdog Operating Controls
7.2 Floor of Transmittex (Rear View)
7.3 RE Outpat Ealun
7.4 RF Cubjelo
7.5 Inatallation Dravires
7.6 Graph -. PA Coarse Tmane
7.7 Block Diagram, BM-3H
7.8. IPA R PA Simpliffed Blook Djacxem
7.9 Gragh - PA Efficioncy Cumo
7.10 Overal Schematio -. Transmituer
7.13 Inow Pass Tiltar
7.12 2nd Harmomio Foltov

1. 1 Warranty and Safety Notice

This equipment is guaranteed under the liberal Gates Warranty, tems and conditions of which are fully set forth in the standard Gates Warranty, available upon request.

Most Gates manufactured items are guaranteed for one year. with the exception of tubes and moving parts. which are subject to specifje warranties based upon hours of usage. The Warranty does not extend to "no charge" service on the field.

Switch to Safety - This equipment employs voltages which are dangerous and may prove fatal if contacted by operatins personmel. Extreme caution should be exercised when working with the equapment. Observe safety reguletions. Do not change tubes on make adjustments inside equipment wjoth ang voltages ON. While your Gates transmitter is rully interm locked you should not xely on the interlock switches for removing high operating voltages. It is always best to dis.. connect the primary power at the building wall switoh and discharge all capacitors with the grounding stick providedo

J. 2 Purpose of Book

This inetmuction book has been prepared to assist in the installation, openationg and maintenance of the Gates min mm_{m} 3 Kh, FH transmitter.
2. 3 Purpose of Equipnent

The Getes FM-3E is an EM broadoast transmittex with $3: 000$ watts output deliverod to the transmission line. The opere ating frequency is $88-108 \mathrm{MHz}$ with characteristics exoeeding those required by the Federal Communications Commission for atandard H broedcast service. The trangmitter is designed for continnous broadoast operation and consists of the exciters intexnediate power amplifier, and the power amplifiex; plus thejr associated power supplies.
2. 4 Desoxiption

Only onc cabinct is required to hoase the entixe transmitter. This cabinet is 42^{4} wide $\times 70^{4}$ high x 32 3/4" doep. AJL neoesm saxy metering is provided by four meters loceted on a meter panel at the top of the cabnetr Ready acoess to the couplete trangmittex is accomplished by removable xear door, hinged acoess panel, and hinged corez of the exozter unt to pront doons are provided to offer a pleasing and symetrical fiont

1. 6 Vacuum Tube Table

The following tubes are employed in the transmittex.

Symbol Designation
V2
VL

Tube Type
40 K 250 B
$4 \mathrm{CX5000A}$

Function
Intermediate Power Amplifiex
Power Amplifiex

SECTION $2-$ INSTALLATION

2.1 Inspection

The FMm $3 H$ is carefully packed at the Gates plant to ensure safe arrival at its destination. The equipment is packed in a number of heavy cartons and wooden crates. Open the crates and cartons carefully to avoid damaging any of the contentse Remove the packing material and search for possible small items such as pilot lights, fuses, loose screws and bolts.

If damage should ocour during shipment, all claims should be filed promptly with the tranaportation company. If a clain is to be filed, the ondginel packing case and matorial mat be preserved. A damage report must be fixled to collect foz ghipping damages. Gates Radio Company ls not responsible sois damage occurring during shipment. Parts or components shipped to replace those damaged in transportation will be bjlled to the customer plus transportation expenses, the cost of when should form a portion of youx claim to the transportation company.

A complete visual inspection should be made of the equammat Detemmine that there are no $700 s e$ comections, $l o o s e$ components, broken insulators etco that mey have been dmased in shipmento Nake sure all relay contacts are free and in good mechenical condtion. Make suxe all mechanical conneotions are tight. Check with a screv ariver or a wrench, all mechani.cal and electrical connections that are mechanically bolted together. All tie down or blocking used fox shipping maposes should be removes. A good orexall visuat inspoetion may save time and trouble in placing the transmittes into operating condition.

2.2 Packing Check List

Certain components of the transmitter have been removed fox shipment and are packed songrately to emsure sefo handingo These parts on the mino 3 have been kept to a bare ranimun and are plug-in units and heaty omponentse Tubes that axe not alamped down for romat operation are elso removed. The tollowing components have been removed from the transm mitter for shipping purposes:

Remount the two monitor coupling loops on the exterior vertical balun.

The lower end of the innermconductor of the balun comects to output loading capacitor C6.

Joosen the Allen set screws on the adjustable portion of the balun. The distance that this component is posjtioned verti cally from the tube deck varies with operating frequency. Refex to your test data sheets fox the proper moasurement on your assigned channel. this adjustment must be accurate within 1/8" for proper operation.

The $40 X 250 B_{0}$ ceramic chirmey, and exbaust tubing are installed in the driver cubicle, figne 7.4. Place the tube in ita socket, slip on the ceramic chimer, and clamp on the anode connector. Drop the exhaust tube through the opening of the upper tube deck to the top of the 40x250B. Hold the exheust tube in place with 0 rings above and below the deck surface.

Installing the $40 x 5000 \mathrm{~A}$ is simple Hending of this tubs is covered in Section 2.4. The anode conneetor assembly secures with a clamp to the tube and with a bolt to the plate line: Coaxse frequency tuning of the plate aircuit is detemnined by the distance of the rotary portion of the place cixcuit from the 4085000 A tube deck. This measurement is recorded in the test data for your transmitter and should be cheoked before operating the transmitter. Molerance bere is approximately 1/16"。

Bolt the low pass filter in the transmission line betweca the dixectional couplex and antenne coax, and your bacio installaw tion is complete. The weight of the low pass filtex should not be applied to the $1-5 / 3^{\prime \prime}$ coavial compomente dizectlyo prowi... sions should be made at the trensmitter site to have at least two supports for the filter.
2.4 Tube Handing and Operating Precations, 40×5000 A

Avoid bumping this tube Due to its lange mass, bumping this tube will introduce resultant stresses which may cause intemal. damage.

Before operating this tube, please refer to the tunemus arid opoxating procoduxe given ju soction 3 . It is recommended procedure to adjust the equipment for opesetion mader heavy plate loading conditions, and with only suffedent RF dave to provide the requirea power output and efficiency.

Extreme caxe should be taken during tune-up as well as in regulai servioc to avoidg even momentarily, operating of this tube under conditions of insuftiotent plate loading on emocsaive RF drive. These operating enadituos, especially at the upper: end of the vin range, will produce excessively high seal and/on bulb temperatuxe and will result in danege to this tube.

2.5 Power Connection

After the transmitter is physically in place and the components removed for shipment have been reinstalled AC power should be brought to the transmitter. Referring to the installation drawing, Figure 7.2 , the $240 \mathrm{~V}_{2} 3$ phase input enters the transritter in the lower right hand corner and connects to the 3 phase fuse block immediately to the left. A 115 V , single phase fuse block jas located at the center and to the rear of. the transition with the input terminals for the 115 volts. single phase towards the rear of the transmitter.

The audio input line enters the base of the transmitter at the center approximately 7% from the front. the audio line connect e directly to terminal hora fill of the He 6425 exciton. terminals 1. and 3 are the audio inputs and terminal 2 is ground ox shield connection. If stereo is used, the lines are connected it a om cordance with the information in the M-6533 stereo generator instructions.

The power leads for the transmitter should cone from a low reactance power share of esther 208,2;0, on 240 volts. 60 Hmm, 3 phase, with approximately an 3 kra capably. A power some of 115 volts, fo ka with 50 watts oapantry is as o required. The conduit or with it of the porer leads shone be in agreement with loon elootrio codes and be able to emmy the pom er requarom meats of the trensinther. pow leads and program leads should
 due to necessity the program leads are in close proximity to

 shows up in one of two ways - Teemed on high noise, and th some cases both x hond be pointed out that even a shan

 to the grids of the and io eqummat, it is rectified am whom up as noise or feedbent we strongly recommend single cora.. mon ground polit from the transmitter base to good grounding system such as a water pine ox actual earthing ground.
2.6 cooling

Slower
pumper 400 CFO
The transmitter is ain cooled end several Kinovate of hoot are developed and disputed through the ais outlet in the top on the bramithen. Th may be necessary to provide a means of exhawating this air from the transatiter room or onclomen Heat is a major energy to eloctamic component doterionations A good system of removing the headed at r from the twancititen
 inlet of the transition wad greatly prolong the life of the
 not provide any bed peoceme to tho power amplifier exdocuro. At no point shoved the dunt breve less of a eroses sathonat
area than the opening at the top of the transmitter. Sharp, right-angle bends are not permissible. Where it is necessary to turn a right-angles a radius type bend should be used.

There are many installation possibilities. Fach and every installation is somewhat difierento Therefore, it is not possible to give complete detailed jnformation on the trensmmitter ductinge only genexal information can be supplied. As a suggestion, contact a local heating and cooling conn tractor for a detailed analysis of the problem.

After the transmitter hes onerated at full output a mumbex of hours ${ }^{\text {a temperature rise instae the transmiter nust not }}$ exceed a rise of 20° above the amilent measured at whe ait intake of the blower andmut mot jise above 60° C unaer any ofrematuances.

SEGTION 3.0 OPARARTON

3.1 Promperation

Before placing the firm in into operation, check once again the points covered in section 2. Have you mounted all componemts physically and nade these electrteal comeotions:

1. Pximary power to the 3 phase fuse bloct?
2. 115 volts to the l phase fuse block?
3. Program line connected to the exciter?
4. 115 volts for the crystal ovens?
5. Transmitter comected to anterna ar a suitable loeo?

If everythjng appears to be in orders then gou may procotide

3.2 Test Data

Your equipnent has gone through meny diftexent kiads of tests at the Gates factory and hes been operated for sevoral hours on your assigned operating trequonoy. Shis is to ensure coxm reot adjustment and proper setbing of all controlso Refen to the test data supplied with your tranmitter. This deta is atbached to the front of the trensmbter when shippet.

3.3 Ajjustinent

Set the aial settings to those given on the test data sheetia Tum the IPA screen vobrege control funy combenchocktse Pruaty pover may now be applied to the twansmitter by pushw ingthe filament om butbono the light beaind the filamont on button shoula lighto Next, the blowen should begin to men
 atimg speed. ain pressure in the PoA enclomwe will operate the ax switche fow run the P. A sexecu voltage controz to the lower posjition (comnteraloumiso) on the sereon mheosted.

Cheok the PoA. bias volteige and adjust es necessary to obtain the test data sheet measurcrents, During the ture up procedure it may be necessamy to increase the IPA voltage to prevent the P.A. from drawing excessive plate current. The grid bias voltage on the f. A. is a combigation of the
 bias sumpy. The nias supply is set at a compronise position to obtan the destred power ontpht and to keep the P.A. withen its dissipation matinge jn case ox RF rahume.

Closing of the aix suitch will turn ON the PA filament voltw age which may be read with the multincter switch on the meter panel in the filameat voltege position. Set the filament voltage for 7.5 volte Next, place the mutrineter suitoh on the motex panel to the drivo oethode cument postion. Whis is the UP posithor. $)$ If the exatere is dentrextig power to the driver stage, a recoing of ampominately 10% with bo road on the multinctare fung the Ima grie tuning for a maxime indjobin. As this meber ib readng oathode waremt it will also read the grid currext. the high voltage may now be applied by pushing the high voltage of buttono This gupplies plate and screen voltage to the Tha stage strultancously with the emplication of plate and soreon rollage to the porer

 for a dip in the The cathode moter readre. fothe plate ciroutt and loading are neaz thein opexating positions porex output of the anpliflex will be noticed.

Travease the somen rodtage of the ponox amplifice by bryging

 the positson of the output loading by roterng the output loading control to give a maxmm output indication.

The RT output neter jes the farthest rieqhomand netex on the
 located on the mpot portho of the ecoses door. You may xead

1. Forwaxa poker.
2. Motex celibation tow maxima scon peabing dutng Viva neasurematyo
3. VSHR on the wansmission line.

 age of the annithes and the Tha stage way be thateasen
 output loaung, and armer piate thang shova be acjusted
for the maximum output and the most overall efficient condition. To reduce the RF output, the amount of arive to the
 IPA. Also the output ian bereduced by decreasine the PA screen voltage.

The multimeter switch (SLO) located on the meter panel will give an indication of the mount of drive to the grid of the PA tube. This is a relative indication and is read with the meter switch in the DOWN position. It will be noticed thet maximun drive condition will be rexy olose to the same polnt of bhe dristernhie current din Mite ariver plate tuning may, at some frequenetes and power levels, be different for maximum output and fox minimum driver plate curiento A conm pronise should be made ox the plete tuinge of the dxiver for a criver cathode current or apyroximately 70% scalo reading with a munuvi or as in tunina. of the dip may afrect pa elvetency as we demovet dutut,
The cperation of the transmitter is very simple and stief ghto forward, and once adjusted should require only a nominal amount of touching up the twang at regulax mainteranoo perionse fit

The ovexloads are set for correct operating level at the factorys The TPA plate overlogd is seb cor nedpy full geale readighon thenvenmethyo the

- are located under a small cover plato loeated on tho front access door. they may be retexred to by symbot mumer on the schenatio (migure 7.10). Pouri outpot of the tranaithem max be inoxeased or decteased by three oonduola on the tramsmbten.

(1)

 control set fox maximum loadine on the gmplifiey as this vilu Eive more stable onskation as resomumded for ant tetrode. (2) Whe second control is the power gapiofies soxeen voldeger After the Joading hes been adjusted for mevimum pores outiont tha acxeen voltage may be reised or lovered fox the desired operam atjug nower (3) Dhe thixd cortrol is the IPA mereen voltace control Reducing this to its minimm value winl reduce the drive and part of the bias to the firmal amplifiex ousung it to orerload and trip the plato voltage It mar be conem However, to give pontial control to powo ousput end gine. tolerense on the power output of the TPA stage it is reoommexase that it te jum et opproximotely 80% of its fud scate sotiting

The output of the exotbex is adusten with cutrut control of the 10 W anplifiex in the oxcitor and is oovered in the excitex menual.

The trensuittex can easily bo remotely conbrollec. Desoxipu tion of the comections is covesed in sestion 5.

Two controls for setting the remote plate voltage and plate current for external metering axe located under the cover on the hinged access door and are show by symbol number on the schematic.

The screen voltage of the power amplifier is motion controlled and is also corrected to the remote control. Raise/towez junco. ion for power output.

3.4 Maintenance

maintenance of the fin m should consist of the following:

1. Keeping the transmitter clean.
2. Changing tubes when emission falls off.
3. Checking mechanical connections and fastenings.
4. Lubricating the blower motor.

Keeping the trarisuitter clean from the accumulation of dust will reduce failure resulting from arcing dirty relay oontactas and overheating of chokes, resistors and transformers. Fleam trosbatio fields axe duct octobers". Support insulators ja the PA enclosure and other locethons are the wore ofterters. They must be kept clean and free of all forelga material at at a times. If not, arcing may result and the insulator shattered.

The ain filters should be clean at ald times. perjobiosty, it should be discarded and replaced wi th a new one pho filter is a disposable type and may be obtained at a bordure or heating supply store.

Once a month the entire tranmithen should be ciemud of duos The inside of the power amplifier should be thorotziny wiped. clean of dust. A small w om, soft nag and vicuna oleanci can bo used veiny effectively in beeping the equipment dean

All convectors and relays should be inspected regularly tox pitting and dirt The contacts should bo Down shod sud cleaned if required. The overload relay are talophomo types with sealed contacts and show ld require little attention o

The bearing for the motor of the pe brows are seated and normally give long trouble rive operation e whey aw numbered for approximately 20,000 hows ot opatetome After this rested ot operation the grease ins these bearings should be chemende This is done by toking the drain plug wit e \hat{f} the bottom of the bearing and appease fitting attuned to the upper plug on tho bearing. Now grease should bo applied until clean exeabe axum out of the drain plus at tho bottom o It is sugsertea the blower be removed for this nemotenanoe.
(The pa tube and the TPA two should be removed moo a monde and tho fins cleared of dust. AFr may be blown through the tins in the reverse direction or the anode cleaned with ron p and water on denatured akobhol.

This transmitter is a precision electrical device, and as such, should be kept clean at all times and free of dust and foxejgh material. Dust and moisture condensation will lead to possible arc overs and short conductive paths.

A good proventive maintenence schedule is always the best assurm ance for trouble free transmitter operation.

SECTION 4 - CIRCUTT DESCRIRSTOM
The FM-3H circuits will be desoribed in the following sections:

Powex Amplifier Intermediate Powex Amplifiex (IPA) Exciter

Power Supply
Control cincuits Metering

See Tllustration 7.7.

4.1 Power Amplifiex

The power amplisier of the Fre 3 H employe a single $40 \times 5000 \mathrm{~A}$ tetrode jn a comon cathode amplifiec cimouit. the plate ciroujt is inducbjvely tuned by varying a length of irmerm conductor of a tranmission line within the rectangulas onbex conduntor. The plate line is approximately onemalf wave. length long, belng foreshortened by the output oapegjty or the tube the large variable portion or the line is used raz rough or approximate frequeney setting and the end of the hallmave line is rade variable for plate oirouit tuning This is controlled fron the front panel. The fine frequency controi ocvers approximatiely 3 HEz at the low end of the FH bend and approx imetely 6 ImHz at the highor ond of the band.

Output coupling is accomplished by cepecity tuning a belum. The balun inductively couples RP powos from the amplionex enclosure.

The PA grid cirouit in common with the TPA plate cirovito The IPA plate inductance, Ir. 6 , IPA plate tuming capacitor, $6-26$, and the input capacitor of the PA tube form a modifted pl cirouto

Bypesang of the PA soreer and filements is accompltshed by using a numbe of high voltege cexamio capacitons with lead lenghas lept as short as poesjble.

In some tranmitbers. especjally at the higher operating frem qhenotes, there is a capacitor comnectod between grid and cathode of the PA. This capacitor is usually 25 p : or 60 p . ${ }^{2}$. jhe purpose of addixg this component is to improve the overall perfomance of the power amplifice.
4.2 IPA

The intermediate power amplifer employs a $4 C X 250 B$ tetrode in a common cathode circuit. The gird circuit is capacity tuned. The plate cirouit is common with the PA grid as previously explained. Screen bypassing ls effectod with the builtoin bypass of the $4 C X 2508$ air system socket. The IPA cathode is bypassed with four ceramic button capacitone.

4.3 Exciter

The FM exciter is described in detail in the exciter instruc.tion book.

4.4 Power Supply

Only one high voltage power supply is used in the min 3F. It supplies 4.3 KV ior the PA plate and 2 KV for the PA eoratw voltage, and the IPA plate The basjo configuration of the supply is a three phase full ware brioge. 2 KV is obtáned from the center tap of the transfomen to supply the IPA plete and also supply the sounce fox the variable voltage of between 300 V . and 1500 V . for the PA screen grid. Series liadting reaistor, R-47, prevents the PA scxeen grid from overodissipetiag in case the PA has a lose of plate volbago.

The 0 to 270 Volt variable suphy for the IDA soreen voltage is also derived from the 2 Ky center tap soluroe R2G is tho control.

The rectifiers fox the supply are molded silicon colmmes mounted on a panel attached to the side of the transutter. The six colums are wired to fome thee phase douviex ofrent.

The ra bias supply is a single phase full weve bridge cirouit using silicon rectifjers. Guid bias botwoen 90 to 175 volts is supplied to the PA control grid. The bleeder resisto. across the supply, R-4l, will also provido adoitional bias voltage if the PA grid ourrent duc to RP drive causes grid current to flow about 40 ma with 160 volts filxed bias. E39 is the bias adiust control.
4.5 Control Circuite

The control ofreutta of the rime consist of the following:

- Kl Primary Contactor - appliea voltage to the finaments, exciter and energizes the blower.
- K2 Plate Contactor -. applies primary voltage to the

- K3 Step/Stare Contectox - closes. Then K2 is energiged, shorting out the contacts of K3 and the 1 ohan resism tors. Step/Staxting of the high voltage supply is acoomplished by $K 3$ closing first and applying voltage to the transfomer prinary through 1 onn resistors, R22; R23, and R24.
- K4 Auxiliary Relay a applies holding voltage to the Step/Start contactox K3, if the air switch and door interlocks are closed.
- K5 Recycle Relay - energizes when ejther the PA overload or IPA overlced relay is encrigized a number of times. The number of times is detemined by control R25. The two overload relay contsots are in sexies across the
 and the contacts open, 035 starts to charge. If the controts are open fow a sufficient lengti of time for 036 to charge to the point that the voltage will energize K5, the contacts of K 5 wjll break the hold eirouts of K4 and the plate voltage will be awitched onf. If K5 does not opelate, the overloard contacts will cione aftier an overload and tho plate contactor k2 whl again encrgize.
- K9 The Undordive Rolay ... Whl prevent appleation or plate and soreen voltage to the IFA and Pof until the grid current of the TPA reaches 8 ma or more. $K 9$ is locatet on the front acesss door below wh. The ontasto or F 9 are in series with doow interlocks. In cene of a plato voltage trip out due to low TPA grid current the moycha circuit will not operate Only TPA and P. An whe over load will operate the recyche circuit.
- S9 Air Sutith oloses aftex the air prossure in the fleman reaches papery pressure, closing twe interjook caroutt and gritching panary voltege to the PA fillarient brangformex.

4.6 Metering

All necessary metering of the from is acoomplished whth fou: motcre locstod on the cabnet meter penel. A multimeter prom vides the following:

IPA Cathodo Current
PA Pilament Voltage
PA Drive
A metering reotifiex cixout is colibwatod at the factoxy to gite PA fillment voltage read on the muthmeter. A PA dmive detector, coupled to the grid cirout, providos a do voltage to the malcineter to indiocte the presence of of in the ph grjd enclosure.

The second meter reads PA plate current and is located in the Plate Bilead. The meter is properly insulated and isolated behind a protective plexiglass cover.

The thitrd meter reads plate voltage and is located on the 3 cw potential side of the meter multipliex resistox.

The fourth meter is for indicating power output and VSWR on the transmission line. This meter works in conjunetion with the directional coupler mounted in the output transmission line.

SECITON 5 - ADDITIONAT TNRORMATON

5.1 Remote Control

Remote control facilities are built juto the Fr-3n and requires only counerticn to either the Gates RDC-loc remote control unit or the Getes RDCo 200A remote control equigment. The conectioms to the trenamitter are mede at $2 B-6$ located in the base of the cabinet. Terminal connections for the funotions are shom on the schemetic Fig. 7.10.

The functions are:

```
1. pailugafos Jwinawy Omome.
2. Momentary ONmomz fon plate voltage.
3. Rascowtowen foz adjusting powen outpmus
4. Plate voltege metorixat,
5. Plate curaent motowines.
6. RN powex output motexing.
```


5.2 Stereophonio Operction

Exoviston has been provided for the installation of the Getos
 Eudto comectione ere giten the the M-5425 manath With the adathios of the m-6533 stero generatom the tranmitter tyro mamber becones wismo3E.

Symbol No．	Gates Part No
$\frac{A I}{A D}$	
BI	4320010000
B2	4360013000
C1， C 35	5160043000
C2，03	5160054000
C6	9141912001
97	5160233000
C8 thru 016	5160205000
C18 thru C 23	5160206000
024	5220071000
C25，049	5160227000
C26	5200228 c00
C31 thru 305160250000	
C32	5200158000
C33，034，048	5160054000
	5220133000
C37，038，047	5160082000
039	5160200000
042	5240013000
C45，046	510051.0000
C51，052，053	5160389000
C54．	5160233000
C56	5160210000

Neon Larap ． 25 W （part of St ） Neon Lamp .25 W （part of S5）

Blower，1／3 H．P． 3500 REM， $11.5 / 230 \mathrm{~V}$ 。
Motor，I RPMI，Ratio $3210-1$, lio VAO
Cap．， 470 pf．，l $K V$ Ceramic disc
Cap．，ool uf．， 1 KV ，Ceramic disc Var．Cap． 5 －12 pi．（modix．） HV Cap．， $500 \mathrm{pr} ., 30 \mathrm{KV}$ ，cexamic HV Cap．， $500 \mathrm{pr} ., 5 \mathrm{KV}$ ，ceramic

Cap．， 1000 pr．， 5 KV ，ceramic Cap．， 50 uf．， 25 V．electrolytic Feedthru Cap．， 500 pr．， 500 V ． Plate Tune Cap．， $0-50$ pr．Vas． Cap．， 500 pf．， 500 V．button type Cap．（part of tube socket）
Grid Tuning Cap．，5－30 nf．Var． Cap．，．OOI ur． 3 KV ，cenamio aisc Cap．， 16 ur．， 450 V．electrolytic Cap．， 01 uf．， 1 KV，ceranic dise Cap．， $25 \mathrm{pf}, 97.5 \mathrm{KV}$ ，cexanic．
Cap．：30－30 uf．， 525 V 。 plug．jn
Cap．， 8 uf．， 3 KV．
Gap． 9600 pI． 10 KV ．
Cap． $500 \mathrm{pf},. 30 \mathrm{IV}$ ．
Cap．， 200 pf．， 7.5 KV ．

Diode，Gommanium，IN54
Diode Zener， 10 V． 10 w ． 1 N2974
Rectifier，Silison， $600 \mathrm{PIV}, \mathrm{NaO}$ Diode， 3 Ing 4

Dixectional Couploy， 4 KV．
Fuse，Gaxtridge， 10 aup． 250 V.
Fuse：Caxtridge， 35 amp． 250 V ．
Fuse，Cartridge， 8 ainp． 250 \％。 Fuse，Cartridee， 1 emp． 250 V ．

Iove Pass Filuter
Hotch Filiter
Receptecje，＂usp＂
Recoptacle；＂BiC＂（pent of FIC） Recepracle＂p＂

Pri．Contactor， 4 pole，llov．． $50 / 60 \mathrm{~Hz}$ 。
Plate／Stcp－start Contactor， 4 pole． 208／220 V．
Contraz Relay，injti，110 r ． 60 ys．

K5	574	0054	000	Recyole Reley, Srot, 6 F ohm
K6:K7	572	0125	000	O.Lis Relay, la , Ib, 6 VDO
K8	572	0066	000	Screer Voltage Control Melay, 20.
K9	572	0052	000	Grid Undexdrive Relay
In	913	8288	001	Variable Coupling Section
I2	942	3910	001	Plate Line \& Coupling Assembly
I3	826	9569	001	Plate Chote
14	494	0004	000	PoA. Gxid EF Choke, 7 nk .
I5	913	9335	002	Drive glate Choke Assembly
L6	913	9343	001	Drive Plate Coil (Low Band)
IT5	923	9346	001	Drive Plato Coil (Hich Band)
IT7	813	9379	001	Driver Grid Coil
I, 8	81.3	9380	001	Driver Input Coupling Coil
J1. 3	476	0014.	000	Reactor, Bjass 6 Hy 。
11.4	476	0186	000	Reactox: PoAs 2 Hy .
IL5	476	0035	000	Reactors Driver, 10 Hy .
MI	632	0547	002	Multraetor, $0.300 \mathrm{MA}, 0 \mathrm{~m} 10 \mathrm{~V}$ and 0.100 sealo
M2	632	0610	002	Meteas Plate Curront, $0=3$ Ampo
M3	632	0545	002	Plate Voltage Meter, $0-5 \mathrm{KY}$ Scelg
M4	632	0582	002.	Meter, PWR, VSUR 0-200 wA.
$\mathrm{Rl}, \mathrm{R2} \mathrm{~B} 3,, \mathrm{R} / 4$	54.0	0594	000	Reas, 200 ohm, $2 \mathrm{~W}, 5 \%$
R5, RI\%	540	0058	000	Reso: 2400 ohng $1 / 2 \mathrm{~V}, 5 \%$
R6, $89.1213,125$	550	0067	000	Controls 10 K chm.
R7	540	0070	000	Heses 7500 ohm, $1 / 2 \mathrm{~W}, 5 \mathrm{~L}$
R28	550	coes	000	VSide control, to k ohm, 2 Ho
RIO	542	0204	000	Reses 5 chmo 50 W
R11,R28,R51	550	0061	000	Contsol, l K ohms 2 W
R12.	540	0580	000	Resag 51 ohm, $2 \mathrm{~W}, 5 \%$
21.4	540	0746	000	Reseg 3300 obu, $2 \mathrm{~W}, 10 \%$
R15	540	0068	000	Ress., 6200 ohm, $1 / 2 \mathrm{l}, 56$
R16	540	0073	000	Reare 10 K chm; $1 / 2 \mathrm{~W}, 5 \%$
21.8	550	0054	000	Driver Eul. Adjust Gontrois 50 olu, evt
P22. 12×3.824.	542	0164	000	Eoser 3 onme 25 W
126	552	0807	000	Contrat, 20 K olan, 50 W
R 27	542	0095	000	Res. 10 K ohm, 10 W
R29	550	0055	000	O.The Adjust Contron, 100 omm 2 W.
R30	542	0058	000	Reses 50 onma 20 Wo
R31.	542	0166	000	Reso. 5 orns 25 W*
R32	548	0167	000	Resso 0.16 okm, 2 W, 10\%
R33	552	0380	000	Fof. Fil. Adjast Rheostat, 10 oing 200 W
R39	552	0324	000	Bias micostat, 5 K onm, 25 W
R40	540	0579	000	Res.s 47 obmi 2 W .
R41	542	0218	000	Rese, 4 K ohn, 50 W
P45	542	0224	000	Resos 10 K obu, 50 W.
R46	552	0423	000	Soreen mheorert; 1.0 \% ohm, 150 Mm

Symbol No.	Gates Part No.	Description
R47	5420370000	Res., 1.5 K ohm, 200 W
R48	9133424001	Meter Multiplier, 5 megohm
R49,R50	5420312000	Res. $100 \mathrm{~K} \mathrm{ohm}$,100 W ,
R52	5400628000	Res., 5100 ohing $2 \mathrm{~W}, 5 \%$
R53	5400301000	Reseg 51 ohm, $1 \mathrm{~V}, 5 \%$
R60, R61, R62	5420090000	Resog 7000 ohns 10 W
R63, R64	5420309000	Reso, 50 K ohm, 100 W .
R65	5420327000	Res., 2000 ohm, 160 W
Sl	6000162000	VSWE/CAL, Rotary Suitch
S2, S8	6040196000	Door Interlock Switoh
S3	6040284000	Fil. Own Pushbutton Switoh N.C.
54	6040283000	Fil. ON Pushbutton Svitch N.O.
55	6040286000	HV OFP Push Switchs N.C.
. 56	6040285000	HV ON Push Smitch, $\mathrm{N}_{0} \mathrm{O}$.
S7	6040032000	Remote Local Toggle Switch DPDT
S9	6040258000	Air Switch, 3 to lıWoc.
510	6020055000	Mutimetex Selector Switch, 2 pole. 3 Pus.
S11	6020056000	Bias Low/High Voltage Inever Shiton. 2 pole
S12, Slis	6040052000	Low/High Voltage Limit Switch
T1	4720409000	PoA. File mpansfoner
T2	4720090000	Driver bilo transformex
T3	4720208000	PoA. Bias Transformex
T4	4720535000	HV Pur. Tramsformox
TBI.	614 0059000	Tominal Board, 2 texninal.
T133	6140073.000	Bias Supply temminal Board, to bemminal
TB4	6140052000	Motor Control terminal Boards 8 tomixal
TB5	6140114000	Tarminal Board, 6 terminal.
T25	61.401 .04000	nate Cth Texainal Board
V1	3740016000	FeA. Tube, $40 \times 5000 \mathrm{~A}$
V2	3740089000	Driven Tubes 4CX250B
X 42	4040016000	Socket, Ockal
($\mathrm{XHz}_{2} 2886$)	4020015000	Fuse Block: 3 pole
(XF3:485)	4020087000	Fuse Rlock, 3 pole
X.a7	4020021000	Tuseholdox
XVI	4040069000	PaA. Tube socket
XV2	4040082000	Driven tube Socket
21. tinu 26	3840235000	Recticior, 10 KV .
27	3840121000	Bias Suprdy Rectixiem

Gates Radio Company is supplying a 3 dB isolation pad, ATl (992-2241-001) with the TE-1 FM Exciter. This should be installed between the RF output of the exciter and the input of following amplifier stages.

The TE-I exciter is capable of supplying RF drive in excess of the amount needed for most transmittexs. The pad provides additional isolation and de-coupling between the exciter and following amplifier stages.

When the TE-1 exciter is supplied in a Gates transmitter, the pad is already installed. If the exciter is supplied alone, the pad can be installed at any convenient point in the transmission line between the exciter output and following amplifier stage. Coaxial RF fittings are mounted on the pad for ease of installation.

PARTS. IIST

ATI Isolation Pad, $3 \mathrm{~dB}-992-2241001$

Symbol No.	Gates Stock No.	Description
	6120233000	Receptacle, Type "N"
	6120237000	Receptacle, Type "BNC"
R35,R36	5400598000	Res., 300 ohm, 2 W.
$\begin{aligned} & \text { R37, R38, } \\ & \text { R39, R40 } \end{aligned}$	5400584000	Res., 75 ohm, 2 W.

> INSTRUCTION MANUAL
> FOR
> M-6425 FM EXCITER
> AS USED WITH
> M-6533 STEREO GENERATOR AND
> M-6507 SCA GENERATOR (S)

INDEX

Page
SPECIFICATIONS 1
EQUIPMENT DESCRIPTION 2
INSPECTION 2
INSTALLATION 2
OPERATION 2
MAINTENANCE 3
TROUBLESHOOTING 3
COMPLETE CIRCUIT DESCRIPTION \& ADJUSTMENT 5
ELECTRICAL PARTS LIST 9
SCHEMATICS \& DRAWINGS
8424885001 Functional Block Diagram
8382064001 Interconnecting Diagram
8381955001 Schematic, Power Supply
8382157001 Schematic, Modulated Oscillator
8271630001 Schematic, 10 Watt Amplifier
8424693001 Schematic, AFC Unit
8382575001 Schematic, Audio Unit
8382026001 Schematic, Sub-Carrier Generator
8424887001 Schematic, Stereo Signal Unit

SPECIFICATIONS
 M-6425 EXCITER AS USED WITH
 M-6507 SCA AND M-6533 STEREO GENERATOR

. MECHANICAL:

Width:	$19^{\prime \prime}$
Height:	$14^{\prime \prime}$
Depth:	$12-1 / 4^{\prime \prime}$

Weight:
(Uncrated) 52 lbs. (monaural only).
3 lbs. (SCA generator).
6 lbs. (sterco generator).
Finish: Beige
Semiconductors used throughout.
All sections of exciter shipped in proper position ready to use. Remote Control Facilities Included: (see explanation on page 3).

ELECTRICAL: (Monaural Operation).
Frequency Range: $\quad 88$ to 108 MHz .
Power Output:
RF Harmonics:
10 Watts (min.)
Suppression meets or exceeds all FCC requirements.
RF Output Impedance: 50 ohms (BNC connector). Oscillator: AFC controlled.
Frequency Stability: $.001 \%$ or better.
Modulation Capability: Capable of $\pm 100 \mathrm{kHz}(\pm 75$
$\mathrm{kHz}=100 \%$ modulation).
Audio Input
Impedance: $\quad 600$ ohms balanced.
Audio Input Level: $\quad+10 \mathrm{dBm} \pm 2 \mathrm{~dB}$ for 100%
modulation at 400 Hz .
Audio Frequency
Response:

Distortion:
FM Noise:
AM Noise:
Temperature:
Altitude:
Power Requirements: 117 VAC , single phase,

ELE(TRICAL: (Stereophonic Operation).
$60 \mathrm{~Hz}, 85$ watts.
Standard 75 microsecond FCC pre-emphasis curve $\pm 1 \mathrm{~dB}, 30-15,000 \mathrm{~Hz}$. $.5 \%, 30$ to $15,000 \mathrm{~Hz}$. 65 dB below 100% modulation (ref. 400 Hz). 70 db below reference carrier AM modulated 100%
-20° to $+50^{\circ} \mathrm{C}$.
$7,500 \mathrm{ft}$.

Pilot Oscillator: Crystal controlled. Pilot Stability: $\quad 19 \mathrm{kHz} \pm 1 \mathrm{~Hz} 0^{\circ}$ to $50^{\circ} \mathrm{C}$. Audio Input
Impedance (lft \& rgt): 600 ohms balanced. Audio Input Level
(lft \& rgt):
Audio Frequency
Resp. (lft \& rgt):
$+10 \mathrm{dBm} \pm 1 \mathrm{~dB}$ for 100°
modulation at 400 Hz
Standard 75 microsecond, FCC pre-emphases curve
$\pm 1 \mathrm{~dB}, 30-15,000 \mathrm{~Hz}$. FCC pre-emphases curve
$\pm 1 \mathrm{~dB}, 30-15,000 \mathrm{~Hz}$.
Distortion (lft or rgt): $\quad 1 \%$ or less, $30-15,000 \mathrm{~Hz}$.
FMI Noise (lft or rgt): $\quad 60 \mathrm{~dB}(\mathrm{~min})$ below 100% modulation (ref. 400 Hz).
Stereo Separation (lft to rgt or rgt to lft channel):

35 dB (min) 30 to $15,000 \mathrm{~Hz}$.

> Sub-Carrier Suppression
> (with or without
> modulation present: $42 \mathrm{db}(\mathrm{min})$ below $90_{\%}^{\circ}$ modulation.
> *Crosstalk (main channel
> to sub-channel or sub-channel to main channel):

> Sub-Carrier 2nd Harmonic Suppression (76 kHz):

> Power Input:
> $42 \mathrm{~dB}(\mathrm{~min})$ below $90^{\circ} \%$ modulation, $30-15,000 \mathrm{~Hz}$.

> 60 dB or better below 100\%; modulation. 24 V DC at 50 ma . (1.2 watts).

NOTE: Stereophonic measurements to be made from an FCC approved monitor or an equally dependable method used such as waveform measurements from a wideband, linear discriminator. A spectrum analyzer may be used in conjunction with a wideband discriminator to measure crosstalk and distortion.

ELECTRICAL:
Frequency:
Frequency Stability:
Oscillator Type:

Modulation:
Modulation Capability:

Audio Input
Impedance:
Audio Input Level:
Audio Frequency
Response:

Distortion:
FM Noise (main chamel
not modulated):
Crosstalk (sub-chan-
nel to main channel
and stereophonic sub-channel): $\quad-60 \mathrm{db}$ or better.
** Crosstalk (main chan-
nel to sub-channel):

50 db below 100% modulation (ref. 400 Hz) with main channel modulated 70% by frequencies $30-15,000 \mathrm{~Hz}$.
*measurement to be made using an $\mathrm{L}=\mathrm{R}$ signal for sub-channel crosstalk and an $L=-R$ signal for main channel crosstalk.

[^0]If FCC model not available, an equally dependable method or instrument to be used.
Power Input:
24 V DC at 40 ma . (. 96 watt).
Variable from 0 to -40 dB below 100% modulation. Remote Control: Exciter is internally equipped to manually or remotely switch from monaural to stereo operation. On monaural operation, normal right audio input connections are switched to the 41 kIz SCA position, if used. Remote functions are accomplished by a single set of external relay contacts (closure required for stereo operation. External relay should provide a holding function.)

EQUIPMENT DESCRIPTION

The M-6425 exciter unit is completely self-contained. Attach it to the 117 V . AC line, connect audio input wires, and you have a complete 10 Watt FM Transmitter.

These same features are also very desirable in building up power level to the kilowatt(s) level. The exciter easily connects into the control circuitry of high power transmitters.
Silicon transistors and diodes are used throughout all circuitry, (exception Q7 and CR1, CR2 in the SCA unit only). These are greatly superior to the older germanium types because they are less sensitive to heat. Considerable transistorized equipment placed in service 15 years ago, is still rumning. It is felt that silicon devices will greatly increase life expectancy of transistorized equipment. This exciter is air cooled and after several hours of operation, it is difficult to detect any heat whatsoever on any part of the exciter enclosure.

INSPECTION

All portions of the exciter are shipped in place and ready to turn on. When the unit is received, immediately inspect it for damage that may have occurred in transit. Look for loose screws and tighten them. If real damage, either concealed or obvious is determined, immediately call the transportation company that delivered the material to you and go over the damages with them. They will either note the shipping waybill which you have or give you a damage report, indicating that you may proceed with repairs. Order the necessary parts from Gates. Gates will bill these parts to you, and you in turn can bill the parts to the transportation company under the damage claim.

Remember most transportation companies like to tell you that the equipment was damaged beyond their control. All Gates equipment is shipped in approved packing containers and you are not obliged to pay for anything broken in transit, but the transportation company is.

INSTALLATION

You will receive this equipment on one of two ways: Already mounted in a high power transmitter, or as a separate unit which may be mounted separately in a rack cabinet or as a replacement in a transmitter for an older type of ex-
citer. If the unit is already in a transmitter, intcrcomnections to the exciter have already been made. If you receive the unit separately, refer to interconnecting diagram 8382064001 for proper connection to the unit. Be sure the audio input wires are shielded. Connect 50 ohm coax from $J 1$ (RF output) on the rear of the exciter enclosure to whatever type load is to be used.

Do not physically mount the unit in a place of excessive heat or dirt. While this will probably not really damage it, you wouldn't lay a precision watch on the top of a hot and dirty amplifier.

OPERATION

Capabilitics of this equipment are far in excess of minimum FCC specifications. In addition, each exciter unit is tested on customer frequency. This insures that the unit was operating properly when it left the Gates plant. Unless the unit has been shaken up considerably in transit you should be operational by merely applying 117 volts to the proper terminals as shown on the interconnecting diagram.

Output of the exciter should be comected into either a dummy load, antenna, or a following amplifier stage. After connecting 117 V . AC to proper terminals on the exciter, power switch located on the power supply may be turned on. Observe the output frequency on a standard FM frequency monitor or by using a frequency counter. Make sure that the AFC ON-OFF switch (S1) is in the ON position.
CAUTION - Do not attempt to fine adjust the output frequency unless the oven heaters have been on for approximately 30 minutes. The overall exciter unit should be on for at least ten minutes before attempting to fine adjust the fine or center frequency control.

If the exciter has been turned on for the prescribed length of time the center frequency may be adjusted by center frequency adjust control R59. This should be done with no modulation applied.

Setting to obtain the proper output frequency should correspond very closely to the figure recorded by the Gates test lab when the unit was tested on customer frequency.
Output frequency should stay well within FCC specifications over long periods of time without any readjustment.

Reset drive control (R11) on the 10 watt amplifier section for the desired output level if this is necessary. A large change in this setting may affect the center frequency setting.

Apply sine wave signals to the audio input terminals for initial observation of programming if so desired. Set the proper audio input levels by observing modulation percentage on a standard FCC approved monitor. Proof of performance data using sine wave signals may then be made by proper connections of a distortion analyzer to the FM monitor.

The unit is now ready to be used as an FM transmitter or as a driver for higher power stages. Fidelity may be checked on any high quality FM receiver by listening checks.

SCA OPERATION

Each exciter unit has provisions for two SCA units (M-6507). The exciter may come equipped with them or these may be added at a later date without changing any cabling or wiring whatsoever. Normally the SCA generators will be on either 41 or 67 kHz . The units should be placed in the slots shown on the interconnecting diagram 8382064001 . Audio input terminals on the rear of the exciter unit will then correspond to the proper SCA unit.

With no main channel modulation on the carrier turn on the SCA time constant switch (S1) to the defeat (D) position. This will turn the SCA generator ON. Set the output level of the SCA generator (R30) to modulate the main carrier as desired. Usually 10 to 15% modulation of the main carrier is sufficient. Do not exceed 30% modulation of the main carrier by the SCA generators. This figure is the total of all SCA generators that may be employed.

Check frequency of the SCA on FCC approved monitor or by a frequency standard. If frequency needs to be re-adjusted retune L3 or L4 slightly with non-metallic tool provided. Use narrow screwdriver blade. SCA unit must be removed from cabinet to do this. SCA unit may be recomected to proper cable plug while setting outside of cabinet.

Program the SCA generator to the proper level as read on a multiplex monitor. Set the mute switch to the desired time constant. This determines how soon after the programming stops that the sub-carrier will turn off.

Set the mute level control (R32) to the muting or quieting level as desired. This will generally be at a level approximately 30 dB below the normal 100% modulation point.

STEREO OPERATION

This exciter has provisions for using an M-6533 composite stereo generator. This may be received with the generator mounted in position or added at a later date without changing any cabling or wiring whatsoever.

The stereo generator may be used in conjunction with either one or two SCA generators. Automatic switching is provided that allows the normal right stereo program to be changed to the second SCA generator when not in a stereo transmission mode.

A total of 16 variable adjustments are provided on the stereo generator. Eleven of these are located internally on the printed wiring board. These twelve adjustments are considered to be one time factory adjustments requiring special equipment. They should not be re-adjusted except in cases of severe trouble. Contact the Gates Service Department first.

Four controls are provided on the front panel of the stereo generator. Pilot gain, pilot phase, output level and $L+R$ gain. Those adjustments located internally on the printed wiring board have a double underline underneath the description of control on the stereo generator schematic. Front Panel adiustments have a box drawn around them on the schematic.

In addition, a pilot defeat switch is provided on the front panel of the stereo generator for test purposes only. This must be placed in the "composite" position for normal programming.

Adjustments located on the front panel of the stereo generator will rarely, if ever, need adiusting. Adjustment should generally not be attempted unless an FCC type approved stereo monitor is available.

All of these controls were properly adjusted at the factory and do not normally drift. Set pilot gain control for 8 to 10% modulation of main carrier with no audio input applied and without any SCA modulation of main carrier.

Set output level so normal programming modulates mainchannel at prescribed level, 90% ($+10 \%$ pilot) or if a 67 kHz SCA is being transmitted, $80 \%(+10 \%$ pilot $+10 \% \mathrm{SCA}$). These are maximum figures allowed.

Set $L+R$ gain control for equal $L+R$ and $L-R$ amplitude. This may be done by observing the output of the generator. The zero axis of the composite signal should have a straight line dividing the upper and lower half.

Set pilot phase control for best separation as read on stereo monitoring equipment. If none is available, connect an $L=-R$ signal to the audio inputs on rear of exciter. Set the signal generator to about 50 Hz and observe waveform on an oscilloscope connected to stereo generator output. Set pilot phase so that the corners of the "eyes" of the pattern are pointing directly at one another.
A "mono", "stereo", "remote" switch located on the audio unit picks the mode of transmission. The right stereo audio input connections are switched to the 41 kHz SCA input when not in the stereo mode. The stereo generator is then completely removed from the circuit.

Remote control equipment may be connected to appropriate terminals on back of the exciter enclosure and the stereo-mono functions performed remotely.

MAINTENANCE

General maintenance should consist of merely keeping excessive dust out of the exciter unit. This applies particularly to the perforated metal screen over the exhaust fan. Make certain that this does not become clogged with dust and dirt.

It is not deemed necessary or advisable to remove covers from individual modules to clean them. They are well shielded and protected.

Exhaust fan (B1) should be lubricated annually. This may be done by removing plug button on ventilation screen.

TROUBLESHOOTING

Since each individual unit is checked on customer frequency before shipment, the exciter should operate properly with a minimum amount of effort. If unit fails to operate properly, re-check to see that all plugs fit tightly into the receptacles on each individual module.

The finest of equipment will, of course, occasionally fail as there is no such thing as 100% infallibility,

If problems develop they can usually be isolated by referring to the appropriate block diagrams. Once the problem has been isolated to an individual module. That module may be checked by referring to the appropriate schematic for that particular module. Each schematic has a series of voltage or waveform measurements made on it to assist in troubleshooting.

A word of caution though, the voltage and waveform measurements are subject to some normal variation. Also, if different types of instruments are used to measure the voltages and waveforms a slightly different reading can be expected.

Complete circuit description and adjustment procedure has been included in this manual to assist in troubleshooting. A complete tune-up should not be attempted unless proper test equipment is available.

A "Cause-and-Effect" table is included in pages following to speed up the isolation of problems.

NO CARRIER OUTPUT

Check that power supply is providing 24 Volts DC. If pilot lamp of power supply does not light check that S 1 on power supply is "ON". Check that 117 V AC is supplied to proper terminals on rear of exciter. Check 117 V fuse, F3, on power supply. Check F1 of cabinet intercabling. This is located on shield box behind power supply. (Refer to interconnecting diagram).

If pilot lamp on power supply lights, check 24 V . and 150 V . fuse.

If power supply is providing proper voltages, check output coax of exciter for short or open circuit.

Determine if modulated oscillator is providing output by listening to FM receiver tuned to operating frequency. Measure output level of modulated oscillator if equipment is available. This should be on the order of .5 to 1 V. RMS open circuit.

If modulated oscillator is providing power output to the 10 watt amplifier, trace the RF signal through the amplifier stages and compare AC and DC voltages with those values given on the schematic.

CARRIER OFF FREQUENCY

Check "locked" and "unlocked" frequency. If frequency is further away from the correct value when AFC defeat switch is on than off, fault probably lies in AFC unit. Check if fine frequency control knob has been misadjusted. Check power supply voltages.

Check that modulated oscillator oven is warm and if crystal oven of AFC unit is warm. If only the crystal oven becomes cold, total drift will only amount to a few kHz and is easily compensated for by re-adjustment of the fine frequency control. Loss of heat on the modulated oscillator circuit will cause a considerable drift of frequency. If the cause of loss of heat can not be immediately determined, modulated oscillator may be
retuned to carrier frequency and operated temporarily without an oven heater. Center frequency drift must then be observed more often and the problem should be solved swiftly.

Some types of frequency monitors will provide a nearly "on frequency" reading even though the carrier is actually several hundred kHz off frequency. The right frequency is the one where the AFC unit locks instead of kicking the frequency monitor off scale. In particular, care should be taken not to tune the modulated oscillator very far below the correct frequency or the AFC unit may lock the carrier to its image frequency which is 400 kHz below the proper frequency.

EXCESSIVE CARRIER SHIFT WHEN MODULATION IS APPLIED

This problem is usually caused by a defect in the AFC unit but is generally of a minor nature if the carrier stays on frequency without modulation. Check that a sufficient amount of RF sample is being fed to the input of the AFC unit. A few hundred Hz of drift is really not objectionable and may be considered normal. Also, some frequency monitors will show a carrier shift when none is present.

HIGH DISTORTION

Most apt to occur in the consoles or audio lines connected to the exciter. No active elements such as transistors are present in the exciter at audio frequencies. Unless there are other symptoms of improper operation, the fault will usually be somewhere else than the exciter itself.

HIGH NOISE

Attempt to identify noise as to type. If 120 Hz ripple, check power supply. If 60 Hz , momentarily disconnect power from oven heaters to see if it is coming from that source. Disconnect audio input wires. If noise is coming from that source, see that center tap of audio output transformer of audio console is not grounded. Check for problems with any type of isolation devices that may be present in a remote controlled system.

Disconnect plug from audio unit and any SCA generators that are used. This should isolate problem as to whether it is in the modulated oscillator or not.

EXCESSIVE CROSSTALK - MAIN \& STEREO CHANNEL TO SCA CHANNEL

This most often is the fault of the detector and IF strip of the SCA monitor or SCA receiver. Determine if high crosstalk is present on more than one receiver. Check that crosstalk is not actually present on audio input wires.

Crosstalk may occur in improperly tuned states of either transmitter or receiver. The tuned stages of the exciter amplifier are very broad and not apt to cause trouble.

POOR STEREO SEPARATION

Check for proper waveform appearance at output of stereo generator and at output of monitor or receiver detector. Check if pilot is on and is modulating main carrier 8 to 10%. Check pilot phase.

COMPLETE CIRCUIT DESCRIPTION AND ADJUSTMENT FOR EACH MODULE

(Refer to block diagram and appropriate schematic).

POWER SUPPLY

The power supply consists of a two section unit which supplies a regulated 24 DC volts and a regulated 150 DC volts. Both sections of this supply receive AC voltage from a common power transformer. With regard to the 150 volt supply, diodes CR1 through CR4 rectify the AC voltage and the pulsating DC voltage is then applied to a filter section consisting of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{R} 1$ and R2.

Q1 is the series regulator for this supply. A portion of the output of Q1 is sampled by reference diodes CR5 and CR13 which are temperature compensated. Transistor Q3 compares the output voltage with that supplied by reference diodes CR5 and CR13 and adjusts the gain of Q1 by means of amplifier Q2 so that the output voltage remains at a constant value as determined by voltage control R4.

With respect to the 24 volt supply, diodes CR6 through CR9 rectify the AC voltage supplied by transformer T . This rectified voltage is applicd to filter section $\mathrm{C} 3, \mathrm{C} 4$ and R7. Q4 is the series control transistor that actually regulates the 24 volt supply. A sample of the output voltage is compared in Q7 with a reference voltage supplied by temperature compensated diodes CR10 and CR11.

Any change in the output voltage is amplified by Q6 and Q5 which then causes series control Q4 to return the output voltage to the value set by control R 11 .

The output voltages will remain relatively constant over a temperature range of from -20 to $+70^{\circ} \mathrm{C}$. The output voltages will also remain constant as the line voltage is varied from 85 to 115% of normal 117 volt AC supply. Normal load variations will also cause no voltage change in these supplies.

For a normal AC input voltage of 110 to 125 volts, the AC input should be connected to the black and the green/blk primary leads of T1. If normal AC line voltage is very low, say 105 volts or less, the black and the white/blk primary leads of T1 should be used. If normal AC line voltage is 125 volts or more, use the black and the white primary leads.

An AC line voltage change of from 85 to 115% of normal should cause a change of no more than .05 volts on the 24 volt section. The 150 volt section should change no more than .5 volts with this same line voltage change.

Normal adjustment of this power supply is to set R4 for an output voltage of 150 volts and R11 for an output voltage of 24 volts. Power supply is then checked to see that line voltage variations or load variations do not cause a voltage variation beyond normal limits.

MODULATED OSCILLATOR

Carrier frequency of exciter unit is generated by an emitter coupled oscillator circuit. This consists of transistors Q1 and Q2 in the modulated oscillator unit. This
circuit will oscillate anywhere in the standard FM broadcast band by adjustment of tuned transformer T 1 .

Transistor Q3 isolates the oscillator circuit proper from any output variations occurring in the load that may be connected to J13.

Normal monaural modulation or signals from a composite stereo generator will modulate the oscillator circuit when connected to pin 2 of J 10 . Modulation is accom plished by varying base bias voltages of transistors Q1 and Q2.

Frequency drift of the modulated oscillator is controlled to well within FCC specifications by first placing the entire circuit in a chamber held at a temperature of $70^{\circ} \mathrm{C}$. Secondly, any drift from assigned frequency is corrected by error voltages from an automatic frequency control unit. These error signals are applied to diodes CR1 and CR2 in such a manner that they return the output frequency of the modulated oscillator to the correct frequency. CR1 and CR2 are silicon diodes biased in the reverse direction. As such, they appear as voltage variable capacitors and are directly connected into the tuned tank circuit of Q1 and Q2.

If SCA modulation is being used, it is applied to the opposite side of the voltage variable capacitors CR1 and CR2 in such a manner that it does not interfere with the frequency control characteristics or with audio or stereo modulation being applied to Q1 and Q2. By isolating the three modulation inputs as explained above, crosstalk is held to a minimum.

Power output at J13 of the modulated oscillator circuit is on the order of 15 to 20 milliwatts.

Normal adjustment of the modulated oscillator is to set it exactly on frequency with the oven warmed up and AFC defeat switch on AFC unit off. AFC defeat switch is then turned on. T1 is the only variable adjustment of the modulated oscillator and when "freerunning" will tune the modulated oscillator from 88 to 108 MHz . SEE PAEE $/ 3 A$

Normal "pull in" range of the AFC /modulated oscillator combination is about 1 kHz for every 50 to 75 kHz drift of the modulated oscillator. In other words, assume that both the "free-running" and "locked" frequency are exactly the same and no deviation from correct center frequency exists. If the " f free-running" frequency of the modulated oscillator ch.nges 50 to 75 kHz , the AFC control should return the locked frequency to within about 1 kHz .

Normal pull in is somewhat better when the modulated oscillator has drifted below normal center frequency.

10 WATT AMPLIFIER

The 10 watt amplifier consists of a four stage amplifier. Transistors Q1, Q2 and Q3 are single stage amplifiers while Q4 and Q5 are paralleled to obtain the desired output level.

Maximum power output of this amplifier is 10 to 15 watts. Actual power output is determined by the setting of R11 an input drive control.

Transformers T1, T2 along with associated capacitor C4 and C7 match the output impedance of these stages to the input impedance of the following stages which is very low. Inductor L1, L2 and capacitor C14 and C15 match the output impedance of Q3 to the low impedance of transistors Q4 and Q5.

The output circuit of Q4 and Q5 is a modified Pi type of circuit consisting of L5, L6 and C19 and C20.

An RF sample for the AFC unit is obtained from J12 through capacitor C22 which sets the level of the desired RF sample. This sample appears at J4 on the 10 Watt amp.

Normal adjustment of the 10 watt amplifier is to tune all adjustments for maximum power output. R11 the drive control is then set for the desired power output. EXACT C22 is adjusted for 4 volts RMS across a 50 ohm load (located in AFC unit). This should be done with the amplifier supplying the desired power output. If the power output of the amplifier is substantially changed, C22 must be re-adjusted.

AFC UNIT

Output frequency of the exciter is maintained exactly on frequency by the AFC unit. A sample of the RF output is fed into J9 of the AFC unit and compared to another RF sample 200 kHz lower in frequency.

An internal RF sample is generated by a crystal controlled oscillator Q1 operating at approximately $1 / 3$ the output frequency. Crystal Y1 is mounted in a $70^{\circ} \mathrm{C}$. oven for maximum stability. Q2 triples the oscillator frequency so that the RF sample obtained from L2 is 200 kHz below the operating frequency.

These two RF samples are then mixed by diodes CR1 and CR2. Low pass filter L5 and C14 and C15 filters out all but the difference of the two RF samples. Transistors Q3, Q4 and Q5 successively clip and amplify the 200 kHz signal applied to the base of Q3. This signal is further limited by transistor circuitry Q6 and Q7.

Width of the pulses obtained from limiter circuit Q6 and Q7 will vary as the 200 kHz intermediate frequency drifts upward and downward. It is the purpose of the gate circuit Q8 and Q9 to limit the width of these pulses to a pre-determined value regardless of the frequency.

The AC-DC converter circuit Q10 obtains its operating voltage from an isolated 150 volt regulated supply. Neither output terminal of the 150 volt supply is at chassis ground potential. As the duty cycle (conduction time) of Q10 is varied the average voltage appearing at the collector of Q10 will vary accordingly. This transistor is driven into conduction and saturation by the constant width pulses applied to the base of Q10 from the gate circuit. The duty cycle of Q10 is thus solely determined by the number of pulses arriving at the base of Q10. The number of pulses per second is, of course, determined by the intermediate frequency as one pulse is generated for every complete cycle of the intermediate frequency.

A reference point for the error voltage is set with respect to chassis ground by center frequency adjust control R59. The filtered DC error voltage appears at terminal 4 of J8 after being filtered by resistor R54, and capacitor C38. This DC error voltage will be exactly zero when the intermediate frequency is 200 kHz .

When the output frequency of the exciter drifts upward, the intermediate frequency will drift upward and change the duty cycle of Q10 so that a positive DC error voltage is obtained for application to the voltage variable capacitors in the modulated oscillator circuit. This error voltage causes the capacity of these diodes to increase thereby lowering the output frequency to its assigned value.

If the output frequency of the exciter attempts to drift lower in frequency the opposite action occurs.

The purpose of CR13 is to prevent a positive error voltage of over approximately 1 volt from appearing at the AFC output terminal J8 terminal 4. If this were not done a sudden positive surge such as when the exciter is initially turned on, would cause the modulated oscillator circuit to seek its image frequency because of the sudden application of a positive voltage.

Adjustment of the AFC unit consists of tuning LI to the crystal frequency. L2 is adjusted to three times the crystal frequency. Approximately 4 VRMS is then sampled from the output of the exciter at $J 9$ and mixed with the internally generated standard frequency to produce a 200 kHz IF frequency.

R59 is finally set in comparison with a frequency standard so that the output frequency of the exciter is correct.

R62 is sometimes varied in value to compensate for an average shift of carrier frequency when modulation is applied.

AUDIO UNIT

The audio unit supplies the modulated oscillator with all main channel modulation (excluding SCA). When the function switch is in the "mono" position, left audio input is filtered and pre-emphasized and applied directly to the modulated oscillator unit. The composite stereo signal including the pilot is completely removed from the modulation input of the modulated oscillator.

If the function switch is in the "stereo" position, left and right audio inputs are filtered, pre-emphasized and applied to a resistive matrix. They then connect to the stereo generator. The composite stereo signal including pilot returns through the audio unit for application to the modulation input of the modulated oscillator.

Left audio input circuitry consists of three fundamental types of circuits. First, is a 19 kHz notch filter consisting of L1 and C1.

Resistors R1 through R5 and capacitors C2, C3, C4 along with inductor L2 is a 75 microsecond pre-emphasis section.

The primary and secondary impedance of T 1 is 600 ohms.

Right audio input circuitry is exactly indential to left audio input circuitry.

When selector switch S1 is in the stereo position, output of the left pre-emphasis section is connected to the primary of T1. The secondary of T 1 connects into the matrix consisting of R13 through R18. At the same time, right audio input signals are routed through the right 19 kHz filter, pre-emphasis network and T2. The secondary of T 2 is also connected into the resistive matrix.

Output of the matrix then produces the $L-R$ and $L+R$ signals for application to the signal unit of the stereo generator. At the same time the composite signal along with the 19 kHz pilot is connected through the relay to the input terminals of the modulated oscillator. The 41 kHz SCA (if used) is muted when audio is not applied.

When S1 is placed in the mono position, audio input signals connected to the left audio input, again pass through a 19 kHz notch filter and the left pre-emphasis network. There the signal terminates in R11. R11 may be adjusted to produce the desired modulation level for a given level of audio input.

Also, with S1 in the mono position the normal right stereo input terminals are connected through relay contacts K1 for application to the input of a 41 kHz subcarrier generator unit if it is used.

The stereo generator is completely bypassed when S1 is in the mono position and no stereo signals (or pilot) can modulate the main carrier.

When $S 1$ is in the remote position the mono to stereo functions may be performed by the contacts of a remote control relay. This relay must perform a holding function.

To adjust the audio unit, $S 1$ is placed in the mono position. A 400 Hz signal at a level of +10 dBm is connected to the left audio input. R11 is then adjusted so the carrier is modulated 100%.

A "Left=Right" signal of 400 Hz is then connected into the left and right audio inputs and S1 is placed in the stereo mode. R18 is then adjusted for minimum 400 Hz signal level at J11-10 ($\mathrm{L}-\mathrm{R}$ out).

A "Left $=$ minus Right" signal of 400 Hz is then connected into the left and right audio inputs. With S1 in the stereo mode, R17 is adjusted for minimum 400 Hz signal level at J11-6 ($\mathrm{L}+\mathrm{R}$ out).

A 19 kHz audio signal is fed into the exciter left audio input terminals and L1 is set for minimum output of 19 kHz signal at $\mathrm{J} 11-6$ ($\mathrm{L}+\mathrm{R}$ out). The 19 kHz is then fed into the right audio input terminals and L3 is adjusted for minimum 19 kHz signal at J11-6 (L+R out).

L 2 and L4 are adjusted for a 16.8 dB rise in output level at 15 kHz as compared to a 400 Hz signal. This is also measured at J11-6 ($\mathrm{L}+\mathrm{R}$ out).

Finally, coils L1 through L4 are retouched slightly for minimum $L+R$ to $L-R$ crosstalk at 15 kHz . This is accomplished by connecting $\mathrm{L}=\mathrm{R}$ and $\mathrm{L}=-\mathrm{R}$ signals into the exciter input terminals and measuring output levels at the $L-R$ and $L+R$ terminals of the matrix.

SUB-CARRIER GENERATOR

This unit generates the desired sub-carrier frequencies (usually 41 or 67 kHz) by utilizing two separate selfexcited oscillators operating in the vicinity of 900 to 975 kHz .

Q1 and Q2 are the individual oscillators and are of a type normally known as Colpitts oscillators. Q1 is set to oscillate at 900 kHz and Q2 is set to oscillate - at 941 or 967 kHz .
. These two outputs are then mixed by diodes CR1 and CR2 and all but the difference frequency is filtered out by L5 and C13 and C14.

The sub-carrier frequency is then amplified by Q3 and applied to a tunable low pass filter consisting of L6, L7, L8 and C19, C20, C21 and C22. This filter removes all harmonics of the sub-carrier frequency.

Audio modulation is applied to the individual oscillators Q1 and Q2 by push-pull audio transformer T 1. The audio is modulated onto the oscillators by variation of base bias voltage.

An audio shaping network is connected ahead of the primary of T1. When connected as shown the audio response will rise up several dB at 5000 cycles with respect to 400 cycles reference. Above 5000 cycles the response will then tend to roll off.

When this generator is used as a 67 kHz sub-carrier unit for use with stereo capacitor C1 and C2 are disconnected. This then functions as a sort of de-em- . phasis circuit rolling off frequencies above 3000 cycles so that sidebands are not generated which would interfere with the stereo signal.

A portion of the audio input is applied to a muting circuit consisting of transistor Q4, Q5, Q6 and Q7. Transistors Q4 and Q5 amplify the input audio to practically a square wave. This is then rectified by diodes CR3 and CR4 for application to transistor Q6.

When audio is applied, the DC level at the base of Q6 is such that Q6 is not conductingl This holds the bias at the base of Q7 in such a manner that Q7 is also not conducting.

When audio is removed from the input, bias from the base of Q6 disappears causing Q6 to conduct. This changes the bias at the base of Q7 causing it to conduct heavily. When this happens, the impedance from the junction of C17 and C18 to chassis ground drops to a level on the order of a few ohms. This causes the sub-carrier output to be attenuated approximately 50 or 60 dB .

The base of Q6 is connected to various capacitors through mute time constant switch S1. The value of the capacitor connected determines how long after audio disappears from the input of Q4 that the sub-carrier will shut off.

Mute level control R32 determines what level the audio must drop to before the sub-carrier is turned off.

Adjustment of the SCA generator consists first of setting the output filter properly so that there are essentially no harmonics of the sub-carrier present in the output of the SCA generator.

L6 and L8 are adjusted for maximum attenuation at the second harmonic of the SCA frequency. L7 is adjusted so that minimum attenuation or ripple exists over the subcarrier passband. This passband is considered to be subcarrier frequency $\pm 15 \mathrm{kHz}$.

L3 is adjusted for an approximate output frequency of 900 kHz and L 4 is adjusted to approximately 900 kHz plus the sub-carrier frequency. This is generally 941 or $967 \mathrm{kHz} . \mathrm{L} 3$ or L4 is then "fine" tuned for the exact proper SCA frequencey in comparison with a frequency standard. A non-metallic tool with narrow screwdriver type blade is necessary for this adjustment.

Output level control R30 is set to modulate the main carrier the required level.

Mute level control R32 is adjusted so the sub-carrier output turns off if the audio input signal disappears. Optimum setting is about 30 to 40 dB below 100% modulation of the sub-carrier. This is done by connecting an audio signal at 400 Hz to the proper SCA input terminals of the exciter and modulating the sub-carrier 100%. The level of audio input is then reduced 30 or 40 dB and mute level is then adjusted so that the sub-carrier output disappears.

S1 the mute delay is adjusted to whatever muting speed is desired after audio disappears from the input.

STEREO GENERATOR

A 19 kHz pilot signal for the composite stereo signal is generated by crystal controlled oscillator Q1. Q2 isolates this signal and from the rotor of R79 a 19 kHz signal is applied to 19 kHz tuned amplifier stage Q3. The secondary of T1 is connected to a push-push doubler circuit consisting of transistors Q4 and Q5.

This stage in conjunction with transformer T2 generates a very clean 38 kHz signal.
The 38 kHz signal is applied to the bal anced subcarrier modulator circuit consisting of transformers T3, T4 and diodes CR1 through CR4.

An $L-R$ input signal from the audio unit is also applied to the balanced sub-carrier modulator.

An L-R double sideband suppressed carrier signal appears at the output of T4. Harmonics of this signal are reduced by forwarding biasing of diodes CRI through CR4 and by adjustment of harmonic null control R37. Sub-carrier null control R48 balances out the residual 38 kHz sub-carrier to a level of approximately -45 dB .

The $L+R$ input signal coming from the audio unit is combined with the $L-R$ double sideband signal at the junction of C22, R53 and R60.

The time delay of the $L+R$ input is adjusted to agree with that experienced by the L-R circuitry. This is
accomplished by a time delay consisting of L3 through L6 and capacitor C29 and C30.

Thus a composite stereo signal appears at the junction of C22, R53 and R60 and is applied to emitter follower circuit Q12 from the rotor of R53 which is the output level control.

This signal is then amplified in transistor Q13 and applied to the base of emitter follower circuit Q14. The total composite signal along with $10 \% 19 \mathrm{kHz}$ pilot signal appears at the emitter of Q14.

A pilot signal is obtained from terminal 4 of transformer T1 and is applied to emitter follower Q6. A phase control connected between Q6 and emitter follower Q7 allows adjustment of pilot phase for maximum separation. A pilot gain control is connected into the emitter of transistor Q7 and the pilot signal is added to the composite output by connecting the rotor of R27 to the emitter resistor of transistor Q14.

Second harmonics of the double sideband signal fall into the pass band of a normal 67 kHz SCA signal. If these second harmonic signals are not severely attenuated, crosstalk from the stereo signal will interfere or get into the sub-carrier channel.

Second harmonic signal is then amplified and inverted 180° by transistor Q9, this is obtained from R53 via Q8.

From the collector of $Q 9$ the signal is applied to emitter follower Q10 and then back into the base circuit of amplifier Q13.

Cancellation causes any remaining crosstalk at the base of Q13 to be removed. This can be set precisely by crosstalk null control R33.

Adiustment of the stereo generator consists of setting C 2 so the pilot signal is within specifications. This must be done in comparison with a frequency standard.

T1 and T2 are tuned for maximum output. Doubler balance control R20 is adjusted for minimum 19 kHz ripple on the composite output signal without a pilot signal. R79 the 19 kHz gain control is set for the desired amount of 38 kHz level to drive the balanced modulator properly. $\mathrm{R} 65, \mathrm{~L}-\mathrm{R}$ gain control is adjusted for the desired level of audio to drive the balanced modulator circuit.

Harmonic null control R37 is adjusted for minimum second harmonic output from the balanced modulator with R33 (crosstalk null) turned for minimum output of second harmonic signal.

Sub-carrier null control R48 is adjusted for minimum 38 kHz output. This may be observed on a type approved stereo monitor, wave analyzer or ultrasonic display. Adjustment of harmonic null control R37 is also best accomplished by observing an ultrasonic display.
$L+R$ gain control is adjusted for correct gain relationship between the $L+R$ and $L-R$ portions of the composite stereo signal. L4 and L5 are adjusted for best phase relationship between the $L+R$ and $L-R$ portions. This is best accomplished at 15 kHz .

R53, output level control, is adjusted to modulate the main carrier 90% with a 400 Hz left or right audio input signal of +10 dBm . This level excludes the pilot.

L 1 is tuned to the second harmonic of the 38 kHz double sideband signal and R33 the crosstalk null control is then turned up so it cancels out any remaining 76 kHz component remaining at the output of the stereo generator.

Pilot gain R27 is adjusted to modulate the main carrier 10\%. Pilot phase R24 is adjusted for best separation as read on a stereo monitor provided all other aspects of the composite signal are proper. An alternate method involves using an $\mathrm{L}=-\mathrm{R}$ composite waveform and is described on page 8 .

PARTS LIST

CABINET ASSEMBLY - 992-1773-001
Symbol No. Gates Part No. Description

B1	4300030000 Fan, 115 V., AC, 115 CFM
C1 thru C20	5160319000 Cap., .001 uF, 500 V.
	Feedthru
F1	3980021000 Fuse, 4A., 250 V.
F2	3980015000 Fuse, .5 A, 250 V.
J1	6120418000 Panel Jack, BNC, UG291/U

L1 thru L6,
L11 thru L20
4940110000 Choke, 3.3 uH .
L7 thru L10 8144837001 Gates Assembly
P3, P4, P9, P13 6200379000 Plug, Female
P12 6100238000 Plug, BNC, UG88/U
P1, P2,
P5 thru P8,

P10, P11
TB1
$\begin{array}{lr}\text { TS1 } & 6140148000 \text { Tie Strip } \\ \text { XF1, XF2 } & 4020024000 \text { Fuseholder } \\ & \text { POWER SUPPLY - 992-1726-001 }\end{array}$

A1	3960163000	Lamp, $3 \mathrm{~W}, 120 \mathrm{~V}$.
C1, C2	5240125000	Cap., $200 \mathrm{uF}, 250 \mathrm{~V}$.
C3, C4	5240104000	Cap., $1000 \mathrm{uF}, 50 \mathrm{~V}$.
C5	5240094000	Capl, $500 \mathrm{uF}, 50 \mathrm{~V}$.
C6, C7	5160043000	Cap., $470 \mathrm{pF}, 1 \mathrm{kV}, 10 \%$
C8, C9, C10, C11,		
C12, C13, C14	5160375000	Cap., $, 01 \mathrm{uF}, 50 \mathrm{~V}$.
C15	5060085000	Cap., $2 \mathrm{uF}, 200 \mathrm{~V}$.

CR1, CR2,
CR3, CR4
CR5
3840019000 Diode 1N2070
3860043000 Zener Diode, 1N2767
CR6, CR7,
CR8, CR9
6120405000 Female Plug, 15 Term.
6140087000 Terminal Board
$\begin{array}{lll}\text { A1 } & 3960163000 & \text { Lamp, } 3 \mathrm{~W}, 120 \mathrm{~V} . \\ \text { C1, C2 } & 5240125000 & \text { Cap., } 200 \mathrm{uF}, 250 \mathrm{~V} . \\ \text { C3, C4 } & 5240104000 & \text { Cap, } 1000 \mathrm{uF}, 50 \mathrm{~V} . \\ \text { C5 } & 5240094000 & \text { Capl, } 500 \mathrm{uF}, 50 \mathrm{~V} . \\ \text { C6, C7 } & 5160043000 & \text { Cap., } 470 \mathrm{pF}, 1 \mathrm{kV}, 10 \% \\ \text { C8, C9, C10, C11, } \\ \text { C12, C13, C14 } & 5160375000 & \text { Cap., } 01 \mathrm{uF}, 50 \mathrm{~V} . \\ \text { C15 } & 5060085000 & \text { Cap., } 2 \mathrm{uF}, 200 \mathrm{~V} .\end{array}$

Symbol No.	Gates Part No.	Description
CR10	3860047000	Zener Diode 1N3582
CR11, CR13	3840134000	Diode, 1N914
CR12	3860034000	Zener Diode, 1N3031B
F1	3980012000	Fuse, 3/10 A, 250 V .
F2	3980021000	Fuse, 4A., 250 V .
F3	3980019000	Fuse, 2A, 250 V .
J1	6100419000	Panel Connector
Q1, Q5	3800041000	Transistor, 2N3054
Q2	3800045000	Transistor, 2N4036
Q3	3800058000	Transistor, 2N3440
Q4	3800043000	Transistor, 2N3055
Q6	3800044000	Transistor, 40319
Q7	3800042000	Transistor, 2N697
R1	5400284000	Res., $10 \mathrm{ohm}, 1 \mathrm{~W}, 1 \%$
R2	5400574000	Res., 30 ohm , 2W, 5%
R3	5480189000	Res., 2200 ohm, $3 \mathrm{~W}, 1 \%$
R4, R11	5520775000	Pot., 1000 ohm, $1 / 2 \mathrm{~W}$.
R5, R6	5480190000	Res., 17.5K ohm, 3W, 1\%
R7	5420438000	Res., 2 ohm, 25 W.
R8, R15	5480192000	Res., 1000 ohm, $3 \mathrm{~W}, 1 \%$
R9	5400583000	Res., 68 ohm, $2 \mathrm{~W}, 5 \%$
${ }^{\text {R13 }}$	5400049000	Res., 1000 ohm , $1 / 2 \mathrm{~W}, 5 \%$
R14	5480197000	Res., 1600 ohm, $3 \mathrm{~W}, 1 \%$
S1	6040005000	Toggle Switch, SPST
T1	4720536000	Power Transformer
XA1	4060367000	Lamp Socket
$\begin{aligned} & \mathrm{XQ2,} \mathrm{XQ3,} \\ & \text { XQ6, XQ7 } \end{aligned}$	4040198000	Transipad for TO-5 Case
XF1, XF2, XF3	4020013000	Fuseholder
10 WAT	T AMPLIFIER	992-1715-001
$\begin{aligned} & \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 5, \\ & \mathrm{C} 6, \mathrm{C} 9, \mathrm{C10}, \\ & \mathrm{C} 18, \mathrm{C} 21 \end{aligned}$	5160054000	Cap., . $001 \mathrm{uF}, 1 \mathrm{kV}, 10 \%$
$\begin{aligned} & \mathrm{C} 4, \mathrm{C} 7, \\ & \mathrm{C} 14, \mathrm{C} 15 \end{aligned}$	5200116000	Cap., Variable, 3.9-50 pF.
C8, C12, C17	5160082000	Cap., . $01 \mathrm{uF}, 1 \mathrm{kV}$, GMV
C11	5060085000	Cap., $2 \mathrm{uF}, 200 \mathrm{~V}$.
C13, C16	5000809000	Cap., 22 pF, $500 \mathrm{~V}, 5 \%$
C19	5000823000	Cap., $82 \mathrm{pF}, 500 \mathrm{~V} ., 5 \%$
C20	5000812000	Cap., $30 \mathrm{pF}, 500 \mathrm{~V}, 5 \%$
C22	5200341000	Cap., Variable, 1.5-9.1pF.
C23, C24	5160043000	Cap., $470 \mathrm{pF}, 1 \mathrm{kV}, 10 \%$
J2	6100419000	Panel Connector
J3, J4	6200355000	Panel Receptacle
J12	6120403000	Right Angle Receptacle UG1098/U
L1	8143242001	Inductor
L2	9143243001	Inductor
L3, L4	4940164000	RF Choke, . 68 uH
L5, L6	8143244001	Inductor
L7	8144837001	Coil

Symbol No.	Gates Part No.	Description	Symbol No.	Gates Part No.	Description	
Q1	3800036000	Transistor	C20	5060087000	Cap., $1 \mathrm{uF}, 200 \mathrm{~V}$.	
Q2	3800037000	Transistor	C21	5160043000	Cap., $470 \mathrm{pF}, 1 \mathrm{kV}, 10 \%$	
Q3	3800038000	Transistor	C22	5160082000	Cap., . $01 \mathrm{uF}, 1 \mathrm{kV}$	
Q4, Q5	3800039000	Transistor				
R1	5400050000	Res., 1100 ohm, 1/2W, 5\%	CR1, CR2	5280007000	Varicap, 1N4808	
R2	5400074000	Res., 11K ohm, 1/2W, 5%	HR1	9143779001	Oven (Modified)	
R3	5400019000	Res., 56 ohm, 1/2W, 5\%				
R4, R7	5400174000	Res., 470 ohm, $1 / 2 \mathrm{~W}, 10 \%$	$\begin{aligned} & \mathrm{J} 10 \\ & \mathrm{~J} 13 \end{aligned}$	$\begin{aligned} & 6100419000 \\ & 6200355000 \end{aligned}$	Panel Connector Panel Receptacle	
R5	5400183000 540 1096000	Res., $2700 \mathrm{ohm} ,1 / 2 \mathrm{~W}, 10 \%$ Res., 33 ohm, $1 \mathrm{~W}, 5 \%$				
R88	5400182000	Res., 35 ohm, 1 W, 2200 ohm, $1 / 2 \mathrm{~W}, 10 \%$	L1 thru L6	4940176000	Choke, 3.3 uH	
R9, R10	5400011000	Res., 27 ohm, $1 / 2 \mathrm{~W}, 5 \%$				
R11	5500001000 Pot., 100 ohm, 1/2 W.		$\begin{aligned} & \text { Q1, Q2 } \\ & \text { Q3 } \end{aligned}$	$\begin{aligned} & 9146003001 \\ & 3800048000 \end{aligned}$	Transistor (Gates Spec) Transistor, 2N3118	
T1	9143246001	Transformer				
T2	9143247001	Transformer				
XQ1, XQ2	4040196000DIO UNIT - 99	Heat Sink	R1	5400928000	Res., 4700 ohm, $1 / 4 \mathrm{~W}, 5 \%$	
			R2	5400937000	Res., 11K ohm, 1/4W, 5\%	
		AUDIO UNIT - 992-1830-001		R3, R4	5400894000	Res., $180 \mathrm{ohm}, 1 / 4 \mathrm{~W}, 5 \%$
				R5, R6, R7	5400960000	Res., 100K ohm, $1 / 4 \mathrm{~W}, 5 \%$
C1, C5	5080308000	Cap.,. 025 uF, 100 V, 1\%	R8, R22 R9, R10	5400880000	Res., $47 \mathrm{ohm}, 1 / 4 \mathrm{~W}, 5 \%$ Res., $51 \mathrm{ohm}, 1 / 4 \mathrm{~W}, 5 \%$	
$\begin{aligned} & \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 6, \\ & \mathrm{C} 7, \mathrm{C} 8 \end{aligned}$			R11	5400948000	Res., 33 K ohm, $1 / 4 \mathrm{~W}, 5 \%$	
	5080307000	Cap., . $03 \mathrm{uF}, 100 \mathrm{~V}, 1 \%$	R12	5400933000	Res., 7500 ohm, $1 / 4 \mathrm{~W}, 5 \%$	
			R13	5400042000	Res., 510 ohm, 1/2 W, 5\%	
C9			R14	5400315000	Res., 200 ohm, 1 W, 5\%	
	5220322000	Cap., $100 \mathrm{uF}, 50 \mathrm{~V}$.	R15, R16	5400950000	Res., 39K ohm, 1/4W, 5\%	
CR1	3840134000	Diode, 1N914	R17, R19	5400937000	Res., 11K ohm, $1 / 4 \mathrm{~W}, 5 \%$	
J11		Diode, 1N. 14	R18	5400939000	Res., 13K ohm, $1 / 4 \mathrm{~W}, 5 \%$	
	6100419000	Panel Connector	$\begin{aligned} & \text { R20 } \\ & \text { R21 } \end{aligned}$	$\begin{aligned} & 5400976000 \\ & 5400912000 \end{aligned}$	Res., 1000 ohm, $1 / 4 \mathrm{~W}, 5 \%$	
K1	5720134000	Relay	T1.	9144247001	RF Transformer Assembly	
L1, L2, L」3, L4	4920328000	Inductor 2.7-3.3 uH	$\begin{aligned} & \mathrm{XQ1}, \mathrm{XQ} 2 \\ & \text { XQ3 } \end{aligned}$			
$\begin{aligned} & \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4, \\ & \mathrm{R} 6, \mathrm{R} 7, \mathrm{R} 8, \mathrm{R} 9 \end{aligned}$				4040198000	Transipad	
	5480139000 Res., 270 ohm, 1/2 W, 1\%			AFC UNIT - 992-1716-001		
R5, R10	5480217000	Res., 110 ohm, $1 / 2$ W, 1%	C1, C13	5000868000	$\text { Cap., } 10 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V} .$	
R11	5520800000	Trim Pot., 500 ohm, 1 W.	${ }_{\mathrm{C} 2}$	5000871000	$\text { Cap., } 39 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$	
R12	5400073000	Res., 10K ohm, 1/2W, 5%	C3, C7, C8, C11	5160054000	Cap., . $001 \mathrm{uF}, 1 \mathrm{kV}$.	
R13, R14	5480218000	Res., 600 ohm, $1 / 2 \mathrm{~W}, 1 \%$	C4	5160375000	Cap., . $01 \mathrm{uF}, 50 \mathrm{~V}$.	
R15, R16	5400043000	Res., 560 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C5, C10	5000869000	Cap., $27 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$.	
R17, R18 R19	5520797000 5400046000	Trim Pot., 100 ohm, 1 W. Res., 750 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C6	5000872000	Cap, $, 110 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$.	
R20	5400036000	Res., 300 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C 9	$\begin{aligned} & 5000867000 \\ & 5220240000 \end{aligned}$	Cap., $5 \mathrm{pF}, \pm 10 \%, 500 \mathrm{~V}$. Cap., $15 \mathrm{uF}, 25 \mathrm{~V}$.	
S1	6040336000	Switch, SPDT, Center OFF	C14, C15	5000877000	Cap., $100 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$.	
	4780282000		C16	5060088000	Cap., 1 uF $, 200 \mathrm{~V}, \mathrm{MMW}$	
T1, T2		Input Xfmr, 8145241001 , ADC	C17, C25	5220240000	Cap., $15 \mathrm{uF}, 25 \mathrm{~V}$. Cap., . $001 \mathrm{uF}, 1 \mathrm{kV}$.	
			C19	5080215000	Cap., $.01 \mathrm{uF}, \pm 10 \%, 100 \mathrm{~V}$.	
XK1	4040209000 Relay Socket		$\begin{aligned} & \mathrm{C} 20, \mathrm{C} 21, \mathrm{C} 22, \\ & \mathrm{C} 23, \mathrm{C} 24 \end{aligned}$	5060088000	Cap., . $1 \mathrm{uF}, 200 \mathrm{~V}$.	
	TED OSCILLAT	OR-992-1772-001				
C1, C2, C8	5160406000	Cap., $5.6 \mathrm{pF}, 200 \mathrm{~V}, 10 \%$	C 27	5000874000	Cap., $330 \mathrm{pF},+5 \%, 100 \mathrm{~V}$.	
C3, C4	5160407000	Cap., $15 \mathrm{pF}, 200 \mathrm{~V}, 10 \%$	C28	5220240000	Cap., $15 \mathrm{uF}, 25 \mathrm{~V}$. Cap. $, 33 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$.	
C5	5160410000	Cap., $1 \mathrm{pF}, 500 \mathrm{WV}$.	C30	5000870000 5000873000	Cap., $33 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$.	
C6, C9, C10	5160409000	Cap., $470 \mathrm{pF}, 200 \mathrm{~V}, 10 \%$	C31	$\begin{aligned} & 5000873000 \\ & 500 \end{aligned}$	Cap., $220 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$.	
$\mathrm{C}_{\mathrm{C} 12} \mathrm{C} 11$	5160408000 5220244000	Cap., $100 \mathrm{pF}, 200 \mathrm{~V}, 10 \%$	C33, C34	5220153000	Cap., 15 uF, 3 V .	
$\stackrel{\mathrm{C} 12}{\mathrm{C} 13, \mathrm{C} 15}$	5220244000 5160043000.	Cap., $50 \mathrm{uF}, 25 \mathrm{~V}$. Cap., $470 \mathrm{pF}, 1 \mathrm{kV}, 10 \%$				
C14	5220240000	Cap., $15 \mathrm{uF}, 25 \mathrm{~V}$.	C35, C36,			
C18, C19	5000880000	Cap., $51 \mathrm{pF}, 500 \mathrm{~V}, 5 \%$	C37, C39	5060088000	Cap., .1uF, 200 .	

Symbol No.	Gates Part No.	Description	Symbol No.	Gates Part No.	Description
C38	5060087000	Cap., 1 uF, 200 V .	R34	5400587000 K	Res., 100 ohm, $2 \mathrm{~W}, 5 \%$
C40, C41	5060085000	Cap., 2 uF, 200 WV.	R35, R36	5400053000 R	Res., $1500 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
C40,		Cap., 2 ur , 200 WV .	R37	5400054000 R	Res., 1600 ohm, $1 / 2 \mathrm{~W}, 5 \%$
C43, C44, C45, C46, C47, C48, C49, C50, C51			R38, R47, R49	5400055000 R	Res, , 1800 ohm, 1/2W, 5%
			R39, R50	5400061000 R	Res., $3300 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
	5160319000	Cap., Feedthru, 1000 pF, 500 V .	R40	5400059000 R	Res., $2700 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
			R41, R44	5400052000 R	Res., $1300 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
			R42	5400041000 R	Res., 470 ohm, $1 / 2 \mathrm{~W}, 10 \%$
C52, C 53	5060088000	Cap., 1 uF, 200 V.	R43	5400037000 R	Res., 330 ohm, $1 / 2 \mathrm{~W}, 5 \%$
			R45,R46	5400048000 R	Res., 910 ohm, $1 / 2 \mathrm{~W}, 5 \%$
CR1, CR2	3840134000	Diode, Silicon 1N914	R48	5400064000 R	Res., $4300 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
CR3	3840134000	Diode, Silicon 1N914	R51	5400053000 R	Res., $1500 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
CR4	3860032000	Diode, Zener 1N747A	R54	5400113000 R	Res., 470 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
CR5	3860046000	Diode, 6082	R55	$\begin{aligned} & 5480195000 \\ & 5400646000 \end{aligned}$	Res., 2000 ohm, 25 W, 1% Res., 30 K ohm, $2 \mathrm{~W}, 5 \%$
			R58	5400655000 R	Res., 68K ohm, 2W, 5\%
CR6, CR7, CR8, CR9, CR12	3840134000	Diode, Silicon 1N914	R59	5520781000 P	Pot., 20 K ohm, 1-1/2 W, Clock Face
CR10, CR11	3860045000		R60	5400635000 R	Res., 10K ohm, 2W, 5\%
CR13	3860073000	Diode, 6046	R62	5400025000 R	Res., 100 ohm, 1/2W, 5%
CR14	3840166000	Diode, Silicon 1N643	R63	5400071000 R	Res., 8200 ohm, $1 / 2 \mathrm{~W}, 5 \%$
CR15	3860047000	Diode, Zener 1N3582	RT1	5590006000	Thermistor, 1000 ohm
HR1	5580024000	Oven, Printed Circuit, $115 \mathrm{~V}, \mathrm{RMS}, 70^{\circ} \mathrm{C}$.	S1	6040320000 S	Switch, Toggle, DPDT
J8	6100419000	Receptacle	XQ1, XQ2, XQ6, XQ7, XQ8, XQ9	7	
J8 J9	6200355000	Panel Receptacle		4040197000	
L1	9143282001	Osc. Coil Assy, (yel. dot)	$\mathrm{XQ3}, \mathrm{XQ4}, \mathrm{XQ5}$	4040198000 4040066000	Transipad for TO-5 Case
L2	9143283001	Trip Coil Assy, (green dot)			ket, Transistor
L3, L5	4940112000	RF Choke, 812 uH	Y1	444 XXXX 000	Crystal (Freq. Det. by
L4	4940151000	RF Choke, 2.7 uH	1	4	Customer Order)
L6	4940165000	Choke, 2.2 uH			
L7, L8	4940153000	RF Choke, 300 uH		A UNIT - 994-65	507-001
$\begin{aligned} & \mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 6, \\ & \mathrm{Q} 7, \mathrm{Q}, \mathrm{Q} 9 \end{aligned}$	3800046000	Transistor, 2N708	C1, C2	5080286000	$\text { Cap., } 15 \text { uF }, \pm 10 \%$ Mylar 100 WVDC
			C3, C4, C5, C8	5000844000	Cap., $1000 \mathrm{pF}, \pm 5 \%, 100 \mathrm{~V}$
Q3, Q4, Q5	3800042000	Transistor, 2N697	C6, C9	5000873000	Cap., $220 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
Q10	3800047000	Transistor, 2N3500	C7, C10	5000818000	Cap., $50 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
			C11, C12	5000759000	Cap., $100 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
R1, R6	5400079000	Res., 18K ohm, 1/2W, 5%	C13, C14	5000878000	Cap., $1500 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
R2, R7	5400071000	Res., 8200 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C15	5080278000	Cap., 1 uF, $\pm 10 \%$ Mylar
R3	5400045000	Res., 680 ohm, $1 / 2 \mathrm{~W}, 5 \%$			100 WVDC
R4	5400066000	Res., 5100 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C16, C27, C29	5220240000	Cap., 15 uF, 25V
R5, R8	5400049000	Res., 1000 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C17, C18	5080298000	Cap., , $01 \mathrm{uF}, 100 \mathrm{~V}, \mathrm{Myl}$ ar
R9, R11	5400025000	Res., $100 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$	C19, C22	5000831000 C	Cap., $250 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
R10	5400301000	Res., 51 ohm, 1W, 5\%	C20, C21	5000874000 C	Cap., $330 \mathrm{pF}, \pm 5 \%, 100 \mathrm{~V}$
R12, R13	5400055000	Res., 1800 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C23	5080298000 C	Cap., . 01 uF, 100 V , Mylar
R14	5400096000	Res., 91 K ohm, $1 / 2 \mathrm{~W}, 5 \%$	C24, C25	5220178000	Cap., 25 uF, 6 VDC
R15	5400056000	Res., 2000 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C26	5220210000	Cap., 100 uF, 12 VDC
R16	5400058000	Res., 2400 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C28	5220233000	Cap., $2 \mathrm{uF}, 25 \mathrm{~V}$
R17, R18, R22	5400071000	Res., 8200 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C30	5220242000	Cap., $25 \mathrm{uF}, 25 \mathrm{VDC}$
R19	5400077000	Res., 15 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$	C31, C32	5220244000	Cap., $50 \mathrm{uF}, 25 \mathrm{~V}$
R20 R24	5400049000	Res., 1000 ohm, $1 / 2 \mathrm{~W}, 5 \%$	C33	5220256000	Cap., $20 \mathrm{uF}, 50 \mathrm{~V}$
R21, R25	5400041000	Res., 470 ohm, $1 / 2 \mathrm{~W}, 5 \%$			
R23	5400079000	Res., 18K ohm, $1 / 2 \mathrm{~W}, 5 \%$	CR1, CR2	3840006000	Diode, Signal 1N54AS
R26	5400085000	Res., 33K ohm, $1 / 2 \mathrm{~W}, 5 \%$	CR3, CR4	3840018000	Rectifier 1N2069
R27	5400065000	Res., $4700 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$			
R28	5400322000	Res., 390 ohm, $1 \mathrm{~W}, 5 \%$	J5	6100419000 R	Receptacle
R29	5400053000	Res., 1500 ohm, 1/2 W, 5\%			
R30	5400462000	Res., 330 ohm, 1W, 10\%	L1, L2	4940175000	Choke 4.7 uH
R31	5400050000	Res., 1100 ohm, $1 / 2 \mathrm{~W}, 5 \%$	L3, L4	4920321000	Coil, Adj. . 28 to .65 uH
R32	5400073000	Res., 10K ohm, $1 / 2 \mathrm{~W}, 5 \%$	L5	4940165000	Choke, 2.2 uH
R33	5400057000	Res., 2200 ohm, 1/2W, 5%	L6, L8	4920322000	Coil, Adj. 8-20 uH

R24	5500009000	Pot., 50 K ohm, $1 / 2 \mathrm{~W}$	R82, R83,
R26, R39	5400924000	Res., 3300 ohm, $1 / 4 \mathrm{~W}, 5 \%$	R84, R85
R27, R53	5500006000	Pot., 5000 ohm, $1 / 2 \mathrm{~W}$	
R32	5400944000 Res., 22 K ohm, $1 / 4 \mathrm{~W}, 5 \%$	RT1	
R33	5520796000 Pot., 5 K ohm, 1 W		
R36, R38	5400895000 Res., 200 ohm, $1 / 4 \mathrm{~W}, 5 \%$	S1	
R37, R48	5520797000 Pot., 100 ohm, 1 W		
R40	5400935000 Res., 9100 ohm, $1 / 4 \mathrm{~W}, 5 \%$		
R41, R42,			T1
R43, R44	5480212000 Res., 4700 ohm, $1 / 2 \mathrm{~W}, 1 \%$	T2	
		T3	
R46, R47	5400864000 Res., 10 ohm, $1 / 4 \mathrm{~W}, 5 \%$	T4	
R55, R63	5400916000 Res., 1500 ohm, $1 / 4 \mathrm{~W}, 5 \%$	TJ1	
R56	5400897000 Res., 240 ohm, $1 / 4 \mathrm{~W}, 5 \%$	TJ2	
R59, R74	5400962000 Res., 120 K ohm, $1 / 4 \mathrm{~W}, 5 \%$		
R65	5520802000 Trim Pot., 1 K ohm, 1 W	XQ1	
R68	5500004000 Pot., 1 K ohm, $1 / 2 \mathrm{~W}$	XQ2 thru XQ16	
R78	5401008000 Res., 10 megohm, $1 / 4 \mathrm{~W}, 5 \%$		
R79	5520800000 Pot., 500 ohm, 1 W	XY1	
R80	5400909000 Res., 750 ohm, $1 / 4 \mathrm{~W}, 5 \%$		
R81	5400936000 Res., 10 K ohm, $1 / 4 \mathrm{~W}, 5 \%$	Y1 5%	

5500009000 Pot., 50 K ohm, $1 / 2 \mathrm{~W}$

R82, R83
R84, R85

RT1

S1

T1
T3
T3
Res., 0 ohm, $1 / 4 \mathrm{~W}, 5$
5400897000 Res 240 hm $1 / 4 \mathrm{~W}, 5 \%$
TJ
5400962000 Res., 120K ohm, 1/4W, 5%
5520802000 Trim Pot., 1K ohm, 1W
5500004000 Pot., 1K ohm, 1/2W
5401008000 Res., 10 megohm, 1/4W, 5\%
5400909000 Res., 750 ohm, $1 / 4 \mathrm{~W}, 5 \%$
5400936000 Res., 10K ohm, 1/4W, 5\% Y1

5480049000 Res., 100 ohm, 1/2W, 1\%

5590006000 Thermistor, 1000 ohm
6040366000 Switch, Subminiature Toggle, SPDT

4780269000 Transformer, 19 kHz 4780270000 Transformer, 38 kHz 4780026000 Transformer 4780220000 Transformer

6120312000 Test Point Jack, White 6120311000 Test Point Jack, Black

4040197000 Transipad 4040198000 Transipad

4040132000 Crystal Socket
4441129000 Crystal, $19 \mathrm{KC}, 30^{\circ} \mathrm{C}$, Circuit 8143270001

AFC ADJUSTMENT TO COMPENSATE FOR CIRCUIT AGING:

With AFC on, tune coarse frequency counter clockwise to raise frequency -- clockwise to lower frequency -- whichever is needed. When the right peak is noted, the "jerking" effect of the AFC unit will be obvious. There are many peaks and it is easy to get on the wrong one. When the "jerking" is seen, then tune coarse frequency control slightly counter clockwise. If frequency rises then you are in the ball park. If a counter clockwise turn lowers the frequency, then you are on the wrong side of the curve. Turn around the same peak to the other side and see if the effect of a counter clockwise turn is a rise in frequency -- if it is, then you're practically home free. Now, turn the AFC unit off and note the direction the frequency goes. If the frequency goes negative, then turn AFC back on and tune coarse frequency control counter clockwise about 500 cycles. Return to zero, with AFC vernier control; then switch off AFC again to note change. Repeat this process until frequency will remain on scale at least for a few seconds without AFC on. NOTE:

When modulated oscillator and its associated AFC unit are operating properly, a counter clockwise turn of the coarse control will raise frequency and a clockwise turn will lower frequency. This is contrary to what one might think, so don't let this confuse you. The AFC vernier control is turned clockwise to raise frequency and counter clockwise to lower frequency.

	[ante	revision		Defm	ens	Ien
1	18/3/66	REDRAWN		TLL		
2	1930/20	REVISEO		30.		
3	12/296	REVISED	ch vok	${ }^{4} \mathrm{w}_{6}$		
4	${ }^{2 / 9 / 6 / 6]}$	Revised		${ }^{4} W_{C}$		

Figure 7.1
Front View, Showing Operating Controls

Figure 7.2
Floor of Transmitter, (Rear View)

Figure 7.3
RF Output Balun

Figure 7.4 RF Cubicle

Figure 7.5
Installation Drawing

pa coarse tuning.
FM 3G/H 3 kW FM TRANSMITTER
FIG 7.6

EQUIVALENT CIRCUIT - LOW PASS FILTER
FIGURE 7.11

At frequencies below resonance the "Stub" appears as an inductance.

At frequencies above resonance the "Stub" appears as a capacity.

At the second harmonic frequency, the "Stub" appears as a series resonant circuit or dead short. at Second Harmonic

MAINTENANCE AND MODIFICATION DATA Gates Radio Co., Quincy, Illinois

Bulletin No.
Date May 14,1969
FM-038MWM

Subject: 3 dB Isolation Network
A 3 dB pad is supplied with the Gates TEl exciter for isolation between the 10 watt $R F$ amplifier and the following stage. Dissipation of this network has been found to be marginal. Failure of this pad may change the value of the load of the 10 watt RF amplifier and could cause failure of one or both of the output transistors.

A change in the 3 dB isolation network is recommended to prevent the possibility of such a failure. The present configuration of the 3 dB isolation network is as follows:

This change made $7 / 69$
DEM
Gates TE-I DCFM Exciter

IN

OUT

The 3 dB isolation network is contained in a 1-5/8" $\mathrm{x} 2-1 / 4^{\prime \prime} \mathrm{x}$ 2-3/4" aluminum box mounted inside the transmitter cabinet direct a. behind the $\mathrm{TE}-1$ output connector.

The network should be modified as follows:

All resistors are 2 watt, 5%.

Equipment: Gates TE-1 DCFM Exciter (M-6425)

Bulletin No.
FM-0 36MWM
Date April 24, 1969

SUBJECT: Service Tips on Frequency Adjustment of the TE-I

The modulated oscillator in the Gates TE-l exciter is a freerunning, slug-tuned oscillator, capable of being tuned to any frequency between 88 and 108 MHz . The automatic frequency control (AFC) module provides a nominal 200 KHz IF output which generates a DC correction voltage to maintain the desired output frequency of the modulated oscillator. Normally, the AFC unit will compensate for modulated oscillator frequency deviations of as much as $\pm 75 \mathrm{KHz}$.

In addition to the modulated oscillator and AFC unit, the regulated power supply and RF amplifier may affect frequency stability.

Frequency correction required falls into one of three categories:
A. Minor Frequency Error--can be observed "on scale" on the frequency monitor, but approaches FCC limits.
B. Major Frequency Error--gives an "off scale" indication on the frequency monitor.
C. Extreme Frequency Error--results in loss of exciter output.

The direction and approximate magnitude of deviation from the desired frequency should be determined before making any frequency adjustment. The method of frequency adjustment depends on the amount of correction required.

ADJUSTMENT PROCEDURES

A. Minor Frequency Error

1. Periodic frequency variations of several hundred Hertz can be considered normal, and no attempt should be made to adjust frequency unless FCC limits are approached. The meter scale on most frequency monitors is calibrated
+3 KHz. Frequency errors within this range should be
corrected with the frequency vernier dial located on the
front panel of the AFC module. The vexnier dial should
normaly remain within one full turn of the recorded
setting indicated in the factory test data. If the
vernier dial does not fall within this range, proceed
with Section B.
B. Major Frequency Error
2. Reset the AFC frequency vernier dial to the setting indicated in the test data supplied with the transmitter.
3. Adjust the coarse tuning control, located above Plug P-IO on the front panel of the modulated oscillator, very slightly. A tuning tool for this purpose is located inside the front drop-down panel of the TE-1 cabinet. This adjustment is made with the AFC function ON. Keep in mind that slight adjustment of this slug can vary the frequency several MHz.
4. If the frequency is above center frequency (high), the coarse tuning control should be turned clockwise. If the frequency is below center frequency (low), the coarse tuning control should be turned counterclockwise. Clockwise adjustment of the coarse frequency control should lower frequency and counterclockwise adjustment of this control should increase frequency. If not, see NOTE following Step 5.
5. Turn the AFC function OFF. For maximum stability, it is desirable that the observed frequency fall somewhere on the scale of the frequency monitor meter, with AFC function defeated. If the free-running frequency is not observed to be on scale, repeat Step 3 with the AFC $0 N$. It may be necessary to repeat this step until the free-running frequency is observed to be on scale. The free-running frequency of the TE-l exciter may appear to fluctuate as observed on the frequency monitor. This is a normal condition.
6. Turn the AFC function ON. Frequency should return to near center scale as observed on the frequency monitor. The AFC frequency vernier dial can now be readusted for the exact frequency desired.

NOTE: The DC correction voltage supplied to the modulated oscillator is derived from mixer action in the AFC unit. It is possible to lock the modulated oscillator frequency with an "image" frequency of the AFC unit. If an "image" is affecting the output frequency, action of the coarse tuning control in the modulated oscillator will appear opposite that described in Step 3. If this situation
occurs, further adjustment of the coarse frequency control is required to determine whether the image frequency is above or below fundamental frequency. It then becomes necessary to repeat the procedures outlined in this section.

C. Extreme Frequency Error

1. Most Gates $\mathcal{F} M$ transmitters are protected with an "underdrive" relay in the interlock circuit. Therefore, it may be impossible to operate the transmitter, and observe frequency on the frequency monitor without output from the exciter. Frequency errors of this magnitude should be corrected as follows:

Return the oscillator to within the bandpass of the exciter RF amplifier by monitoring grid or cathode carrent of the following stage. It may be impossible to determine whether the oscillator is above or below the desired operating frequency. Therefore, rotation of the coarse tuning adjustment may be required in either direction. (An alternate method would be to feed the exciter output through a wattmeter (or other RF indicating device) into a nominal 50 ohm load and adjust the modulated oscillator coarse tuning control for maximum exciter RF output.) Output of the TE-1 must be terminated at all times in a 50 ohm resistive load if not connected to the input of the following stage.
2. The IPA or final stages of the transmitter should not be retuned at this time, even though full transmitter power output may not be indicated. If, for any reason, these controls have been changed, they should be returned to the normal operating positions, or to those settings indicated in the factory test data.
3. As sufficient output is obtained from the exciter to allow operation of the transmitter, the modulation monitor can be used to permit coarse frequency correction because of its wide-band input. Observe the monitor RF input on the front panel meter and adjust the coarse tuning control of the modulated oscillator for maximum indication. This should return the frequency to within $\pm 500 \mathrm{KHz}$, or close enough to allow further adjustment as indicated in Section B.

This bulletin is intended as a "tuning procedure" only. Frequency deviation may be the result of component failure, in which case the methods outlined in the M-6425 instruction book, under the heading of "Troubleshooting," should be followed.
$50.752-74434$

GiLES MODEL TE I FM EXCITER

- (Type 166425)
\qquad

\qquad
\qquad Mc.

CRYSTAl FREQ. 32.7666 Mc.
AUDIO SOURCE IMPEDANCE \qquad Ohms.

CENTER FREQUENCY VERNIER SETTING \qquad 732 DISTORTION AND RESPONSE

Freq. Hz
$* 3$

30
50
100
400
1000
2500
5000
7500
ZTHYQ00
15,000
NOISE

Frequency Response (With respect to standard 75 us pre-emphasis Curve)

FM noise with/respect to 100% modulation at 400 Hz is - 66 dB .
Input level/necessary to modulate 100% at 400 Hz is $+10 \quad \mathrm{dBm}$.
HM Noise $\angle-75 \mathrm{~dB}$, with respect to equivalent of $100 \% \mathrm{AM}$ Modulation.

PORER OUTPUT

This information, of a general nature, will be recognized by many as standard fundamental electronic information. Frequently, when problems exist, one or more of the well known fundamentals may have been overlooked. The following information, therefore, is a check list and/or a suggestion list. You will quickly note it applies to many types of installations, the fundamentals for which are all basically the same.

1. COMPUTING EFFICIENCY. The transmitter efficiency determines its satisfactory operation. If it is under-efficient, it will consume excess primary power, will work all components harder and tube life will be shorter. If it is over -efficient, it probably indicates either an error in a computation such as tower resistance measurements or an error in a meter. To measure efficiency in an AM transmitter, multiply the plate voltage by the plate current of the final radio frequency power amplifier. For example, if plate voltage was 2500 volts and plate current was 550 MA , we have:

$$
\begin{array}{r}
2500 \\
\quad .550 \\
\hline 1375.000
\end{array}
$$

The above means that 1375 watts are being placed into the radio frequency power amplifier. If this power amplifier is producing 1000 watts into the antenna, it would then indicate an efficiency of 73%, or

$$
\frac{1000}{1375}=73 \%
$$

2. TRANSMITTER EFFICIENCIES. There are two types of radio frequency power amplifiers. (1) High level and (2) linear amplifiers. Normal efficiency of a high level transmitter ranges from 65 to 77% for trans mitters of powers up to and including 1000 watts and 72 to 82% for transmitters having powers of 5000 watts to 10,000 watts. --- For linear amplifiers with no modulation, the normal efficiency at any power is approximately 30%. It is important to note that in a linear amplifier the efficiency increases under modulation, therefore when defining normal efficiency it must be defined without modulation.

NOTE: Variations in efficiency such as a range of 65 to 77% are expressed for reasons of: (a) transmitter used with directional antenna, which would reduce efficiency, (b) slight but not out of tolerance meter error, and (c) possible mismatch to transmission line having slightly higher than normal standing wave ratio.

If the efficiencies are within the ranges expressed, however, the installation could be considered satis factory and of course the higher the efficiency, the better.
3. COMPUTING POWER OUTPUT. Power output is computed either into the radiating antenna or a known dummy antenna. In either case, the resistance measurements are known. Your consulting engineer will measure your antenna tower and give you the resistance measurement. In most Gates built AM trans mitters an inbuilt dummy antenna is provided, having a resistance measurement of 50 ohms. The formula $I^{2} R$ is employed. $I=$ The current reading of your antenna meter at the tower or the meter to the dummy antenna. $R=$ The resistance measurement of the tower or the dummy antenna. If the resistance measure ment is 50 ohms and your antenna current was 4.5 amperes, then $\mathrm{I}^{2} \mathrm{R}$ develops this result: $4.5 \times 4.5=$ 20.25. 20.25×50 (the antenna resistance) $=1012.5$ watts. In the foregoing you have determined that you have a direct power output reading of 1012.5 watts if your antenna current is 4.5 amperes into a 50 ohm antenna.
4. CORRECTING LOW EFFICIENCY. Basically a broadcast transmitter by inherent design can not produce low efficiency unless, of course, it is incorrectly tuned, or the matching load to the transmitter, which is the transmission line and antenna, is incorrect. Here the use of the dummy antenna of known resistance is of great value. Light bulbs or improvised dummy antennas are of little value in computing efficiency. By using the formula in Paragraph 3 above, it is easy to determine how efficient the transmitter is operating when it is not connected to the antenna or transmission line. If the efficiency proves satisfactory into the dummy antenna, then any inefficiency is probably in the match of the transmitter to the radiating antenna and its associated tuning unit and transmission line.
If the efficiency of the transmitter is low into the dummy antenna, check the plate volt meter and power amplifier current meter to be sure they are accurate. In rare cases they are damaged in transit. This checking can be done with another known meter such as a good quality voltohmmeter, being very careful as the voltages are lethal.

Another cause of low efficiency is a defective RF ammeter. If you suspect this, the best way is to borrow one from a nearby station. It does not have to be the exact same range as you are only interested in a comparative reading. Here an error of only. 2 of an ampere can make a large difference in the efficiency. Using Paragraph 3 above, again you will note a meter reading example of 4.5 amperes was used to give us
1012.5 watts output. If this meter had read 4.4 amperes, the output would have been 968 watts. By the meter being off only 0.1 amperes, 44 watts of error or loss was determined, which is nearly 5% of the 1000 watts desired power output. ---- Mostradio frequency ammeters are very carefully checked and should be accurate but here again on a sensitive item, transportation roughage can affect it and therefore be sure.
5. ARCING. The power developed in the transmitter must go somewhere and of course to the antenna. When it is sidetracked, frequently arcing develops. Low efficiency and arcing will often go together as all trans mitters are very well insulated against arcing. Its presence would indicate one of several things:
--- Improper tuning of antenna coupler.
-- Standing wave ratios on the transmission line, usually indicated by a different current reading at each end of the line.
-- Improper ground return from the ground radials to the transmitter.
--- Incorrect resistance measurements to the tower.
--- Improper neutralization where it is required.
--- An intermittent connection such as a loose connection in the tuning unit, a loose connection in the transmission line, poor brazing of the ground system and infrequently a grounded tower light wire.
6. TUNING ANTENNA COUPLER. Your consultant will be of invaluable assistance in tuning up your antenna coupler correctly with a radio frequency bridge at the same time he measures your tower. It will be money well spent. Where this is not possible and a bridge is not available, then the standard cut and try procedures must be followed. The desired result, of course, is the greatest antenna current without increasing the power input to the transmitter to obtain this increased antenna current.
7. STANDING WAVES. This is commonly called VSWR and high standing waves are caused by improper impedance match between the output of the transmitter to the transmission line and/or the output of the transmission line to the antenna coupler and its antenna. The result will nearly always be inefficiency as it reduces the power transfer between the transmitter and the antenna. High standing waves may also be caused by a poor or no ground to the outer shield of the transmission line. This line should be grounded to the ground radials at the tower and to the transmitter at the opposite end of the transmission line. The only exception to this might be with a directional system but in all instances the outer shield of the transmission line must be grounded securely.
8. IMPROPER GROUND. In an AM transmitter we place at least 120 ground radials into the ground but sometimes fail to connect them securely to the transmitter. In the simplest form, the antenna and the ground can be likened to the two wires of an electric light circuit. One is as important as the other. Where the ground radials are bonded together at the tower, we suggest extending a 2" copper strap directly to the ground of the broadcast transmitter. DO NOT attach one of the outer radials closest to the transmitter as your ground system. Don't forget to ground the cabinets of the antenna coupling unit and the tower lighting chokes, and again the outer shield of the transmission line.
9. INCORRECT TOWER MEASUREMENTS. Your consulting engineer is provided with expensive and accurate measuring equipment for tower resistance measurements. His measurements will be accurate. It would be extremely rare to find an incorrect tower measurement by a capable consulting engineer. It-has happened, however, and we include this paragraph only to point out that if all else fails for proper transmitter performance, rechecking of the tower measurements would not be amiss. Several years ago one of the world's leading consultants measured a tower incorrectly and quickly admitted it. The cause was simply one of his measuring instruments falling out of his car unbeknownst to him and upsetting the calibration of his equipment.
10. FUSE BLOWING. It seldom happens if. the fuses are of adequate size. If it does happen, the first thing is to determine that the fuses are not overloaded. Usually overloaded fuses caused by a long period of over load of an hour or more have blackened fuse clips. Remember a very hot day and borderline fuses are trouble-makers. Also don't forget to compute the window fan, the well pump, the air-conditioner, or other items that are foolers as to power consumption.
If fuses are of adequate size and continue to blow, here are a few helpful hints:
If your transmitter has mercury vapor rectifiers, it is a cold morning and
the heat in your building has goen down overnight, the mercury will likely
cool at the bottom of the rectifier tubes and when high voltage is applied,
cause an arc back. In such a condition, you are fortunate in blowing the
fuses as an arc back can often destroy a filter reactor or power trans -
former. You can correct this condition by keeping adequate heat in the
transmitter building or at least adjacent to the mercury vapor rectifier
tubes. A light bulb placed near the rectifier tubes, to operate in cold
weather when the transmitter is off, is helpful.
Dirt or scum is an evil with many results and fuse blowing caused by arc-
overs is one of them. A. good maintenance program prevents this.
On new transmitters, look for cable abrasions. Sometimes in transit it is possible for a wire to rub against a metal support and wear off the insulation. This is unlikely but with such a serious problem as fuses blowing, you look for everything.

If by the time you have found the trouble you have blown a number of fuses, now investigate your fuse box to be sure the clips are clean and not charred. If they are charred, fuse blowing will continue anyway and it will be necessary to replace the clips that hold the fuses.
11. UNEXPLAINED OUTAGES. This one puzzles the best of them. A transmitter that goes off the air for no reason and can be turned back on by pushing the start button brings the query, "What caused that?" If this happens very infrequently, it is probably caused by a power line dip, a jump across the arc gap at the tower base, or other normal things that activate the protective relays in the transmitter as they should.

Your transmitter always looks like the offender. It is the device with meters and it is the device that complains or quits if there is a failure anywhere in the entire system. An open or short circuit in a transmission line only reacts at the transmitter. A faulty insulator in an antenna guy wire or a bad connection in the tuning unit or ground system reacts only at the transmitter. Here again the dummy antenna is of great value. If these unexplained outages do not appear in operating into a dummy antenna, then you must look elsewhere for the problem. It is always well to remember that the transmission line tuning units and associated connections, including the tower chokes, are somewhat like the drive shaft between the automobile motor and the rear wheels. If the drive shaft fails, it does not mean that the motor is defective.
12. STEP BY STEP TROUBLE -SHOOTING. Never trouble-shoot on the basis of "it might be this or that". Instead, start from the beginning. If the transmitter was satisfactory on the dummy antenna, then the question becomes "Where is the trouble?" If a transmission line connects the transmitter to the antenna coupler, then disconnect the antenna coupler and provide a dummy antenna at the far end of the transmission line and repeat the test. If you noticed the outage at this point, then the trouble is in the transmission line. If not, reconnect it to the antenna coupler unit and put the dummy antenna at the output of the coupling unit. This is known as step by step checking to locate problems.

The same process is used in trouble-shooting the transmitter. In checking voltages, you start with the oscillator and go thr ough to the power amplifier and with the first audio stage to the final audio stage. Other outage conditions not affecting the transmitter are listed below for your checking:

Under certain conditions, especially at higher altitudes, the guy insulators will arc, usually caused by static conditions. This will nearly always cause an outage as it changes the antenna characteristics. This is hard to find as it is hard to see. Use of field glasses at night is the best way. If it happens, the insulator should be shunted with a resistor. Write our Engineering Department for advice, giving full antenna detail when writing.

At times the arc gap at the base of the tower is set too close or has accumulated dirt. This causes an arc to ground under high modulation.

A crack in the tower base insulator is very unlikely but it should be inspected and keeping the base insulator clean is necessary. A low resistance path at this point is highly undesirable.

Look at the tower chokes. Though they are husky, they are in a vulnerable position for lightning. You might find a charred point that is causing the trouble.

Shunt fed towers or those with no base insulator are usually more sensitive to static bursts than series fed towers. The best method is to try and make the feed line to the tower equal the impedance of the transmission line. Talk to your consultant about this.

One side of the tower lighting circuit shorted to the tower itself, either permanently or intermittently, can cause trouble even though the lights may function perfectly.
13. OTHER OUTAGES. If the transmitter is the offender, such as acting improperly on a dummy antenna, the process of elimination by starting at the first and following through is preferred, unless of course the cause is actually known. The following may be helpful:
(FALL OUT) The transmitter turns off at high modulation. Possibly the overload relay is set too sensitive. The transmitter may not be properly neutralized where neutralization is required.
(HARD TO MODULATE) Cause can be either improper impedance match between transmitter and the transmission line or low grid drive to the final power amplifier. Consult the instruction book for correct grid drive. The correct match of the transmitter to load is covered in the instruction book. Usually an antenna current meter that does not move up freely with modulation indicates a mismatch between the transmitter and its loading equipment.
(BAD REGULATION) The size of the primary lines between the meter box and the transmitter is extremely important. If they are too small, bad. regulation will exist. In some instances the power line has bad regulation too. This

Tube checking. Check tubes at least monthly and it is just as easy to do it each week during the periodic maintenance program. Certain tubes will become gaseous if left on the spare tube shelf too long. This type of tube should be rotated into the transmitter to prevent an emergency change to the spare tube, only to find it blowing out because of a gaseous condition.

Oiling. If the transmitter has blowers, oil them as required, but do not over -oil. Some types of turntables require oiling the motors.

Relay contacts. Burnish the contacts with an approved burnishing tool. This should be done about every six to eight weeks.

Other preventive ideas. Clean mixing attenuators if they are not the sealed type, with carbon tetrachloride, about once monthly. Every station should have a small suction type cleaner. Even your wife's Hoover with the suction attachments will do an excellent job of pulling dust from the inside of the hard to get corners of a transmitter. Take a leaf from the Navy book which says everything must at all times be sparkling clean or what is know as shipshape.
17. ADEQUATE TEST EQUIPMENT. To have a maintenance program, certain capital equipment is necessary. Do not be ashamed to tell your Manager about this because he will recognize that proper maintenance is saving money and not spending money. As a minimum, you should have this equipment:

Dummy antenna (frequently supplied in Gates transmitters).
Proof of performance equipment, which includes an audio oscillator, distortion meter, gain set; and RF pickup coil or rectifier, known as the Gates SAl3l proof of performance package.

A good grade of voltohmmeter.
A spare antenna current meter.
An inexpensive oscillos cope.
All of the above will cost less than $\$ 1000.00$ and will pay for itself many times through the years.
18. THE CHIEF ENGINEER. He has the job of keeping everybody happy - listeners, Manager, and stockholders. When trouble comes, he is under pressure. He will do his best to correct the problem as fast as he can. It is well to remember that electronic equipment has many circuits and many avenues of travel. Where problems are known, the solution is usually quick. Where the problem must be found, the solution will take time. It is well to remember that if equipment did not need maintenance, it would not need a Chief Engineer. The greatest service he renders is the insistence on a regular preventive maintenance program, which he knows will prevent most problems. If the unusual problem does arrive, causing an outage, everyone in the broadcasting should be understanding and tolerant as the problem can be solved quickest by not breathing over the Chief Engineer's shoulder.
19. GATES ASSISTANCE TO HELP. Gates sincerely believes that the best type of assistance it can render to the technical personnel in the radio broadcasting industry is in providing full cooperation, day or night, in solving any problem no matter how small. Gates technical people recognize that sometimes the biggest problem is solved in the most simple manner. This is part of electronics and never is fun poked at a simple solution because this is the happiest kind. It is only by asking questions of any calibre, simple or complex, of Gates people and mutually working together that the finest degree of broadcast programming is possible in your broadcasting station and the industry.

Service avenues. Unless the problem is of an emergency nature, Gates suggests that you write to the Gates Service Department about problems that you are experiencing. If you have a problem that can not wait, call the Gates Service Department during daylight hours at Area Code 217, 222-8202. Gates daylight hours are from 8 A.M. to 5 P.M., Monday thru Friday, Central Standard Time or Central Daylight Time, depending upon the period of the year. Gates nighttime service can be obtained by calling Area Code 217, 222-8202.

GATES RADIO COMPANY
Subsidiary of Harris-Intertype Corporation
Quincy, Illinois, U.S.A.

```
    5.0.752-28018
```


CUSTOMER isIS

MIM NEAPOLIS，MINN

OPERATING FREQ \qquad 98.5 327666 Mc： CRYSTAL FREQ 。 \qquad
AUEIO SOURCE INPTELNCE GOO Ohms CENTER FREQUENCY VERNIER SETTING \qquad 862

I－DIAL READINGS
IPA Grid Tuning＿49
IPA Plato Tuning 25
Pi Plato Tuning 28.8
Ph Output Loading i fo
II－METER REIDTMGS
IPA Cathode Current \qquad 195取。

PL Filament Voltage 7.5° Volts
Pi Drive \qquad 65 Div．

Pi Plate Current \qquad imps．

Pis Plate Voltage 4200 Volts．
RF Output \qquad 3000 Watts 。
Bias Volt age measured at TB－3－3x 4 H ．V．off－ 165 Volts． III－MISCELLANEOUS

VEER＿ 1.05 .1
Plate Dissipation 1955 Matts
Plate Efficiency \qquad $\%$ 。

3 Phase Line Voltage $235235-235$ Volts．
3 Phase Line Current 15 an 17 imps．
I Phase Line Voltage $1 / \mathrm{lB}$－Volts．e
I Phase Line Current＿ 3 imps．
LC Supply Line Frequency 60 Hz 。
Power Output and plato dissipation checked at 10% above rated power \qquad －I．．

IV - DISTORTION LAND RESPONSE

Frequency Response (With respect to standard

75 us premomphasis Curve)

V - NOISE
FM noise with respect to 100% modulation at 400 Hz is -67 ds .

Input level. necessary to modulate 100% at 400 Hz is
$+10 \quad \mathrm{~dB}$.
M Noise $50 \quad d B$.
With respect to equivalent of 100% M Modulation.
VI - Setting of output coupling sleeve distance of bottom of sleeve to tube deck $14 / 4$ inches.

B ottom of Ph_{2} Tuning Lam to Deck

STEREOPHONIC DATA

Operating Ercouency is 98.5 Ez
Input level is $+10 \quad \mathrm{~dB}$ m for 100% modulation at 400 Hza
Pilot modulation of Min Carrier frequency is \qquad $\%$ 。

Pilot frequency is 189997 Hz .
38 KHz suppression is 45 dB below 100% modulation 。
76 KHz suppression is $60 \quad \mathrm{~dB}$ below 100% modulation.

Crosstalk (I / R into $I-R$ or $I-R$ into $I \cdot R$) is $-42 d B$ below 100% modulation.

SEPARATION ET 100% MODULATION:

STEREOPHONIC DATí:

DISTORTION AT 100\% MODUL_TION:

$\frac{\text { Frequency }}{H z}$	$\frac{\text { Left Channel }}{5}$	$\frac{\text { Richt Channel }}{\%}$
50	0.80	0.41
100	0.68	0.35
400	0.45	0.40
1000	0.45	0.31
3000	0.35	0.30
5000	0.45	0.45
8000	0.55	0.54
10,000	0.54	0,35
15,000	0.65	0.65

FREQUENCY RESPONSE With Respect to Standard Pre-emphasis Curve:

Frequency	Left Channel	Right Channel
- $\mathrm{Hz}^{\text {che }}$	d ${ }^{\text {B }}$	dB
50	0	θ
100	+0.1	10.1
400	0	0
1000	0	C
3000	0	2
5000	-0.2	-0.1
8000	-0.5	$-0,4$
10,000	-0.6	$-0,4$
15,000	-0.6	-0.4

[^0]: ** crosstalk measurements to be made from an FCC approved monitor using 75 microsecond de-emphasis.

